• 제목/요약/키워드: Current density

검색결과 5,652건 처리시간 0.032초

전해조건이 고순도 알루미늄 박 콘덴서의 터널에칭과 정전용량에 미치는 영향 (The Influence of Electrolytic Condition on Tunnel Etching and Capacitance Gain of High purity Aluminium Foil on capacitor)

  • 이재운;이병우;김용현;이광학;김흥식
    • 한국표면공학회지
    • /
    • 제30권1호
    • /
    • pp.44-56
    • /
    • 1997
  • Influence of electrochemical etching conditions on capacitance gain of aluminium electrolytic on capacitor foil has been investigated by etching cubic textured high purity aluminum foil in dilute hydrochloric acid. Uniformly distributed etch pit tunnels on aluminum surface have been obtained by pretreatment aluminium foil in 10% NaOH solution for 5 minutes followed by electrochemical etching. Electrostatic capacitance of etched aluminium foil anodized to high voltage increased with the increase of current density, total charge, temperature and concentration of electrolyte up to maximum CV-value and then deceased. Election optical observation of the etched foil revealed that the density of etch of etch pits increased with the increase of current density and concentration of electrolyte. this increase of etch pit density enlarged of the increase of capacitance. However, abnormal high current density and high electrolyte concentration induced the local dissolution of the foil surface which resulted the decrease of foil capacitance.

  • PDF

$a-Si_{1-x}Ge_x:H$ 화합물(化合物) p-i-n 태양전지(太陽電池)의 물리(物理) 및 전류밀도(電流密度)-전압(電壓) 특성(特性) (Physics and current density-voltage characteristics of $a-Si_{1-x}Ge_x:H$ alloy p-i-n solar cells)

  • 권영식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1435-1438
    • /
    • 1994
  • The effects of Ge composition variation in $a-Si_{1-x}Ge_x:H$ alloy p-i-n solar cells on the physical properties and current density-voltage characteristics are analyzed by a new simulation modelling based on the update published experimental datas. The simulation modelling includes newly formulated density of gap density spectrum corresponding to Ge composition variation and utilizes the newly derived generation rate formulars which include the reflection coefficients and can apply to multijunction structures as well as single junction structure. The effects in $a-Si_{1-x}Ge_x:H$ single junction are analyzed through the efficiency, fill factor, open circuit voltage, short circuit current density, free carriers, trap carriers, electric field, generation rate and recombination rate. Based on the results analyzed in single junction structure, the applications to multiple junction structures are discussed and the optimal conditions reaching to a high performance are investigated.

  • PDF

TSV 구리 필링 공정에서 JGB의 농도와 전류밀도의 상관 관계에 관한 연구 (Study on the Relationship between Concentration of JGB and Current Density in TSV Copper filling)

  • 장세현;최광성;이재호
    • 마이크로전자및패키징학회지
    • /
    • 제22권4호
    • /
    • pp.99-104
    • /
    • 2015
  • 비아 필링에 있어서 void나 seam 생성이 없이 비아를 채우는 것은 매우 중요한 사항으로 전류밀도, 전류모드, 첨가제 등을 변화시켜 결함없는 비아를 얻어왔다. 그러나 다양한 첨가제의 부산물이 오염의 원인이 되며 도금액의 수명을 줄이는 문제점이 있었다. 본 연구에서는 오염을 최소화하기 위하여 다른 첨가제가 없이 JGB만을 사용하여 JGB 농도와 전류밀도 변화에 따른 비아 필링 현상을 연구하였다. 지름이 $15{\mu}m$이며 종횡비 4인 비아가 사용되었으며 펄스전류를 이용하여 도금을 하였다. 전류밀도는 $10{\sim}20mA/cm^2$, JGB 농도는 0~25 ppm까지 변화시키면서 JGB 농도와 전류밀도와 의 상관관계를 mapping 하였다. 그로부터 지름이 $15{\mu}m$이며 종횡비 4인 비아 필링의 최적 조건을 확립하였다.

바나듐계 산화-환원 유동 전지의 최대 방전전류와 유량의 상관성에 대한 실험적 연구 (Discharged Maximum Current Density of Vanadium Redox Flow Battery with Increased Electrolyte Flow Rate)

  • 김정명;박희성
    • 대한기계학회논문집B
    • /
    • 제40권12호
    • /
    • pp.777-784
    • /
    • 2016
  • 바나듐 전해질 산화-환원 흐름전지(vanadium redox flow batteries, VRFBs)는 간헐적 에너지 저장 시스템의 에너지 저장장치로 사용된다. VRFBs는 재료 및 동작조건에 따라 성능의 차이를 보이며, 각 성능특성에 따른 VRFBs개발이 요구된다. 본 연구에 사용된 단위셀은 반응면적 $25cm^2$이며, 전해액은 0.6의 충전상태를 나타낸다. 방전전류밀도를 0에서 $520mA/cm^2$ 까지 변화시키면서 동시에 전해질 유량도 5mL/min에서 60mL/min까지 변화시켰다. 동일한 입구 전해액 상태에 따른 방전 성능 평가를 위해 4개의 탱크를 사용한 비순환 시스템을 구축하였다. 본 논문은 유량 및 전류밀도의 변화에 대한 단자전압을 측정하였으며, $25cm^2$ 반응면적을 가지는 바나듐계 산화-환원 유동전지 시스템의 최대전류밀도에 대한 실험식을 도출하였다.

미세금형 가공을 위한 전기화학식각 공정의 유한요소 해석 및 실험결과 비교 (Finite Element Simulation and Experimental Study on the Electrochemical Etching Process for Fabrication of Micro Metal Mold)

  • 류헌열;임현승;조시형;황병준;이성호;박진구
    • 한국재료학회지
    • /
    • 제22권9호
    • /
    • pp.482-488
    • /
    • 2012
  • To fabricate a precise micro metal mold, the electrochemical etching process has been researched. We investigated the electrochemical etching process numerically and experimentally to determine the etching tendency of the process, focusing on the current density, which is a major parameter of the process. The finite element method, a kind of numerical analysis, was used to determine the current density distribution on the workpiece. Stainless steel(SS304) substrate with various sized square and circular array patterns as an anode and copper(Cu) plate as a cathode were used for the electrochemical experiments. A mixture of $H_2SO_4$, $H_3PO_4$, and DIW was used as an electrolyte. In this paper, comparison of the results from the experiment and the numerical simulation is presented, including the current density distribution and line profile from the simulation, and the etching profile and surface morphology from the experiment. Etching profile and surface morphology were characterized using a 3D-profiler and FE-SEM measurement. From a comparison of the data, it was confirmed that the current density distribution and the line profile of the simulation were similar to the surface morphology and the etching profile of the experiment, respectively. The current density is more concentrated at the vertex of the square pattern and circumference of the circular pattern. And, the depth of the etched area is proportional to the current density.

남조류 Synechocystis PCC 6803을 이용한 생물전기화학적 물분해 전기 생산 (Electricity Generation Using Cyanobacteria Synechocystis PCC 6803 in Photosynthetic Bio-Electrochemical Fuel Cell)

  • 김민진;오유관;김미선
    • 한국수소및신에너지학회논문집
    • /
    • 제19권6호
    • /
    • pp.529-536
    • /
    • 2008
  • Cyanobacteria Synechocystis PCC 6803 or the extracted thylakoid membrane from this strain was appled to photosynthetic bio-electrochemical fuel cell(PBEFC) for the production of hydrogen under the illumination of 48Klux using halogen lamp. PBEFC was composed of anode, cathode and membrane between them. Electrode material was carbon paper while electron mediator and receptor were added phenazine methosulfate(PMS) and potassium ferricyanide respectively. When water and 50 mM tricine buffer and $300{\mu}M$ PMS were added to the anode under the light condition, PBEFC produced the current density $4.4{\times}10^{-5}\;mA/cm^2$, $1.4{\times}10^{-4}\;mA/cm^2$ and $2.4{\times}10^{-4}\;mA/cm^2$, respectively. And the addition of the thylakoid membrane to the system increased current density to $1.3{\times}10^{-3}\;mA/cm^2$. Two times increase of the thylakoid membrane into the anode doubled the current density to $2.6{\times}10^{-3}\;mA/cm^2$. But the current density was not increased proportionally to the amount of thylakoid membrane increased. The system was unstable to measure the electricity output due to the foam production in the anode. Addition of triton X-100 and tween 80 stabilized the system to measure the electricity output but the current density was not increased higher than $8.4{\times}10^{-4}\;mA/cm^2$ and $2.3{\times}10^{-3}\;mA/cm^2$. When the thylakoid membrane was substituted to Synechocystis PCC 6803 cells of four-day culture which has chlorophyll contents $20.5{\mu}g/m{\ell}$, maximum current density was $1.3{\times}10^{-3}\;mA/cm^2$ with $1\;k{\Omega}$ resistance.

용접조건과 전류밀도에 따른 페라이트 스테인리스강의 수소취성에 관한 연구 (The Study on the Hydrogen Embrittlement of ferrite Stainless Steel with Welding Conditions and Current Density)

  • 최병일;임우조
    • 한국가스학회지
    • /
    • 제10권1호
    • /
    • pp.43-47
    • /
    • 2006
  • 스테인리스 강재 STS 444에 있어서 용접조건에 따른 수소취성의 민감도와 인가 전류밀도에 따른 수소취성의 영향을 고찰하고자 $0.5M\;H_2SO_4+0.001M\;As_2O_3$ 수용액에서 전기화학적 부식시험장치로 전류밀도를 5, 10, 15, 20 $mA/cm^2$로 인가하여 U 벤드 시험편의 수소취성에 관해 연구하였다. 이때 파괴되는 시간을 조사하여 수소취성을 고찰하였으며, 금속조직 현미경 사진을 비교하여 금속조직적인 연관 특성을 고찰하였다. STS 444 강재에 있어서 용접조건 즉 보호가스양의 변화에 따라서 수소취성에 대한 큰 영향을 받고 있으며, 전류밀도에 따라서도 많은 영향을 받고 있다. 특히 인가전류밀도가 높아짐에 따라 수소균열이 급격히 빨라지고 있음을 알 수 있다.

  • PDF

SOFC 셀 성능 향상 및 수명 저하 방지를 위한 입구와 출구 2개의 유로 설계 (Design of flow path with 2 inlet and outlets to improve cell performance and prevent cell degradation in Solid Oxide Fuel Cell)

  • 김동우;염은섭
    • 한국가시화정보학회지
    • /
    • 제19권2호
    • /
    • pp.56-62
    • /
    • 2021
  • Solid oxide fuel cells (SOFCs) is the high efficiency fuel cell operating at high temperatures ranging from 700-1000℃. Design of the flow paths of the fuel and air in SOFCs is important to improve cell performance and prevent cell degradation. However, the uneven distribution of current density in the traditional type having one inlet and outlet causes cell degradation. In this regard, the parallel flow path with two inlet and outlets was designed and compared to the traditional type based on computational fluid dynamics (CFD) simulation. To check the cell performance, hydrogen distribution, velocity distribution and current density distribution were monitored. The results validated that the parallel designs with two inlets and outlets have a higher cell performance compared to the traditional design with one inlet and outlet due to a larger reaction area. In case of uniform-type paths, more uniform current density distribution was observed with less cross-sectional variation in flow paths. In case of contracted and expanded inflow paths, significant improvement of performance and uniform current density was not observed compared to uniform parallel path. Considering SOFC cell with uniform current density can prevent cell degradation, more suitable design of SOFC cell with less cross-sectional variation in the flow path should be developed. This work can be helpful to understand the role of flow distribution in the SOFC performance.

리튬이온전지 음극의 고속 성능 향상을 위한 도전재 복합화 (Composited Conductive Materials for Enhancing the Ultrafast Performance for Anode in Lithium-Ion Battery)

  • 성기욱;안효진
    • 한국재료학회지
    • /
    • 제32권11호
    • /
    • pp.474-480
    • /
    • 2022
  • Lithium-ion batteries (LIBs) are powerful energy storage devices with several advantages, including high energy density, large voltage window, high cycling stability, and eco-friendliness. However, demand for ultrafast charge/discharge performance is increasing, and many improvements are needed in the electrode which contains the carbon-based active material. Among LIB electrode components, the conductive additive plays an important role, connecting the active materials and enhancing charge transfer within the electrode. This impacts electrical and ionic conductivity, electrical resistance, and the density of the electrode. Therefore, to increase ultrafast cycling performance by enhancing the electrical conductivity and density of the electrode, we complexed Ketjen black and graphene and applied conductive agents. This electrode, with the composite conductive additives, exhibited high electrical conductivity (12.11 S/cm), excellent high-rate performance (28.6 mAh/g at current density of 3,000 mA/g), and great long-term cycling stability at high current density (88.7 % after 500 cycles at current density of 3,000 mA/g). This excellent high-rate performance with cycling stability is attributed to the increased electrical conductivity, due to the increased amount of graphene, which has high intrinsic electrical conductivity, and the high density of the electrode.