• Title/Summary/Keyword: Current density

Search Result 5,639, Processing Time 0.034 seconds

Fabrication of 6-superconducting layered HTS wire for high engineering critical current density

  • Kim, Gwantae;Ha, Hongsoo;Kim, Hosup;Oh, Sangsoo;Lee, Jaehun;Moon, Seunghyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.10-13
    • /
    • 2021
  • Recently, cable conductors composed of numerous coated conductors have been developed to transport huge current for large-scale applications, for example accelerators and fusion reactors. Various cable conductors such as CORC (Conductor on round core), Roebel Cable, and TSTC (Twisted stacked tape cable) have been designed and tested to apply for large-scale applications. But, these cable conductors cannot improve the engineering critical current density (Je) because they are made by simple stacking of coated conductors. In this study, multi-HTS (High temperature superconductor) layers on one substrate (MHOS) wire was fabricated to increase the engineering critical current density by using the exfoliation of superconducting layer from substrate and silver diffusion bonding method. By the repetition of these processes, the 10 m long 6-layer MHOS conductor was successfully fabricated without any intermediate layers like buffer or solder. 6-layer MHOS conductor exhibited a high critical current of 2,460A/12mm-w. and high engineering critical current density of 1,367A/mm2 at liquid nitrogen temperature.

Investigation on Electrolytic Corrosion Characteristics with the Variation of Current Density of 5083-H321 Aluminum Alloy in Seawater (5083-H321 알루미늄 합금의 해수 내 전류밀도의 변화에 따른 전식 특성 연구)

  • Kim, Young-Bok;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • Electrolytic corrosion of the ship's hull can be occurred due to stray current during welding work using shore power and electrical leakage using shore power supply. The electrolytic corrosion characteristics were investigated for Al5083-H321 through potentiodynamic polarization and galvanostatic corrosion test in natural seawater. Experiments of electrolytic corrosion were tested at various current densities ranging from $0.01mA/cm^2$ to $10mA/cm^2$ for 30 minutes, and at various applied time ranging from 60 to 240 minutes. Evaluation of electrolytic corrosion was carried out by Tafel extrapolation, weight loss, surface analysis after the experiment. In the electrolytic corrosion characteristics of Al5083-H321 as the current density increased, the surface damage tended to proportionally increase. In the current density of $0.01mA/cm^2$ for a applied long time, the damage tended to grow on the surface. In the case of $10mA/cm^2$ current density for a applied long time, the damage progressed to the depth direction of the surface, and the amount of weight loss per hour increased to 4 mg/hr.

Influence of Current Density on Corrosion Properties of AZ91 Mg Alloy Coated by Plasma Electrolytic Oxidation Method (인가전류밀도에 따른 플라즈마 전해산화코팅된 AZ91 마그네슘 합금의 내식성 변화)

  • Lee, Byung Uk;Hwang, In Jun;Lee, Jae Sik;Ko, Young Gun;Shin, Dong Hyuk
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.601-607
    • /
    • 2011
  • The study investigated the influence of current density on the corrosion-protection properties of an AZ91 Mg alloy subjected to plasma electrolytic oxidation coating. The present coatings were carried out under an AC condition at three different current densities, i.e., 100, 150, and $200mA/cm^2$. From microstructural observations, the micro cracks connecting each micro pore were pronounced on the oxide surface of the samples coated at current densities higher than $150mA/cm^2$ since increasing the current density in this study led to an increment in the relative volume fraction of the MgO compound. Based on potentio dynamic polarization and immersion tests, the sample coated at a current density of $100mA/cm^2$ showed superior corrosion resistance.

The effect of HRT, current density, and packing ratio on nitrate nitrogen removal efficiency and current efficiency in BRM-BER (고정상 담체를 충진한 BER에서 HRT, 전류밀도 및 담체 충진율 변화가 질산성 질소 제거효율과 전류이용효율에 미치는 영향)

  • Whang, Gye-Dae;Lee, Sang-Keun;Sung, Hae-Chang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.433-442
    • /
    • 2010
  • BER at different packing ratios of bio-ring media(BRM) was tested to investigate the effect of varying hydraulic retention time (HRT) and current density on the nitrate removal and current efficiency. In the preliminary batch mode experiment of BERs, current density was applied at 2.0 A/$m^2$, 4.0 A/$m^2$, 4.8 A/$m^2$, which correspond to the designation of reactor #1, #2, #3, respectively. The reactor #2 showed a highest nitrate removal rate of 162.0 mg $NO_3{^-}$-N/L/d, and the kinetics of nitrate removal rate was defined as the Zero order reaction. In the primary experiment of BERs, four BERs packed with BRM were operated in varying HRT and current, and the packing ratios of reactor #1, #2, #3 and #4 were 0%, 8%, 16%, 24%. respectively. This results of the experiments indicated that the nitrate removal rate and current efficiency were increased significantly cause of growing of autotrophic denitrification microorganisms on the surface of cathode and media by increasing of the current density and decreasing of HRT. However, The decreasing of nitrate removal rate and current efficiencies were observed in the condition of HRT of 5.25 hr and 4.8 A/$m^2$ of current density. With more increasing current density and decreasing of HRT, the hydrogen inhibition occurred at the surface of cathode. Moreover, nitrate removal rate by autotrophic denitrification microorganisms attached on the media surface was observed to be limited by no longer increasing dissolved hydrogen concentration of each reactor. In conclusion, the highest nitrate nitrogen removal and current efficiency could be achieved when the BER was operated at the conditions of 7 hr HRT, current density of 4.0 A/$m^2$, and 16% packing ratio. And it was found that the amount of nitrate removal by microorganisms attached on the surface of cathode and media (BRM) was 178.2 mg/L and 52.2 mg/L respectively. and the amount of nitrate removal per MLVSS was 0.435 g $NO_3{^-}$-N/g $MLVSS{\cdot}d$ and 0.336 $NO_3{^-}$-N/g $MLVSS{\cdot}d$.

Numerical Prediction of Tidal Current by Effects of Wind and Density Current in Estuaries of Yeong-il Bay (하구밀도류와 바람장이 영일만 해수유동에 미치는 영향)

  • Yoon, Han-Sam;Lee, In-Cheol;Ryu, Cheong-Ro
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.277-283
    • /
    • 2003
  • This paper constructed the 3D real-time numerical model for which predicts the water quality and movement characteristics of the inner bay, which consider the characteristics of the wind-driven current and density current in estuaries which generated by the river discharge from the Hyeong-san river and oceanic water of the Eastern sea. The constructed numerical model reappeared successfully the seawater circulation current of Yeong-il Bay, which used the input conditions of the real-time tidal current, river discharge and weather conditions at March of 2001 year. Also to observe the wind-driven current and density current in estuaries effected to the seawater circulation pattern of the inner bay, we investigated the analyzation for the each impact factors and the relationship with the water quality of Yeong-il bay

  • PDF

A Study on the Numerical Analysis of Magnetic Flux Density by a Solenoid for MIAB Welding (MIAB용접에서 코일에 의한 자속밀도 분포의 수치적 해석에 관한 연구)

  • Choe, Dong-Hyeok;Kim, Jae-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.73-81
    • /
    • 2001
  • The MIAB welding uses a rotating arc as its heat source and is known as an efficient method fur pipe butt welding. The arc is rotated around the weld line by the electro-magnetic force resulting from the interaction of arc current and magnetic field. The electro-magnetic force is affected by magnetic flux density, arc current, and arc length. Especially, the magnetic flux density is an important factor on arc rotation and weld quality. This paper presents a 2D finite element model for the analysis of magnetic flux density in the actual welding conditions. The magnetic flux density is mainly dependent on gap between two pipes, the position of coil from gap center, exciting current, and relative permeability. Thus, the relations between magnetic flux density and main factors were investigated through experiment and analysis. Experiments were performed for the steel pipes(48.1mm O.D and 2.0mm thickness). The analysis results of magnetic flux density reveal that it increases with increasing exciting current, increasing relative permeability, decreasing distance from gap center to coil, and decreasing gap size. It is considered that the results of this study can be used as important data on the design of coil system and MIAB welding system.

  • PDF

current profiles in a coated conductor with transport current (외부 전류가 흐를 때 초전도 선재에서의 전류 분포)

  • Yoo, Jae-Un;Lee, Sang-Moo;Jung, Ye-Hyun;Lee, Jae-Young;Youm, Do-Jun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.1-4
    • /
    • 2007
  • The current profiles in a coated conductor with transport current were calculated using an iterative inversion method from the data of the magnetic flux density profiles measured. The applied current was increased from 0 to 60 A by 10A step and decreased down to -60A by 20A step. The magnetic flux profiles were measured at a distance of 400 mm above the surface of the coated conductor using a scanning hall probe method. The current profiles calculated were very different from the Bean model: current density profile is not a constant in the critical region. However the aspect of the change of the current and magnetic flux density profiles in the case of decreasing applied current are similar to the theoretical calculations in Brandt's paper.

EFFECTS OF CURRENT DENSITY AND ETCHING TIME ON ETCHING DEPTH AND SURFACE ROUGHNESS OF NI-CR-BE ALLOY (전류밀도와 식각시간이 니켈-크롬-베릴륨 합금의 식각깊이와 표면조도에 미치는 영향)

  • Jeong Seong-Kweon;Jeon Young-Chan;Jeong Chang-Mo;Lim Jang-Seop
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.4
    • /
    • pp.323-334
    • /
    • 2002
  • The purpose of this study is to investigate which current densities and etching times will result in an optimal etching depth and surface roughness when an Ni-Cr-Be alloy is etched with 30% perchloric acid($HClO_4$). For this study, observations were made by means of an optical three-dimensional surface roughness measuring machine and a scanning electron microscope. The etchings took place under the following conditions using current densities of $300mA/cm^2\;450mA/cm^2,\;600mA/cm^2$ and $750mA/cm^2$, and using etching time of three, five, six, seven and nine minutes. Under the conditions, the experiments reached the following conclusions. 1. When the current density is above $450mA/cm^2$ and the etching time is longer than five minutes, the etching depth increased as the current density and etching time increased. And the surface roughness was significantly influenced by the interaction of the current density and etching time. 2. Under the etching conditions of $600mA/cm^2$ and five minutes, the optimal etching depth for a resin cement space and the highest surface roughness for mechanical retention were obtained. The etching depth and surface roughness were $32.86{\mu}m$ and $7.90{\mu}m$, respectively. 3. Observations under the scanning electron microscope showed that both the corrosion at the grain boundary and the corrosion within the grain occurred on the etched surface. It was also observed that the corrosion at the grain boundary became more severe as the current density and etching time increased. In addition. at higher current densities and longer etching times general corrosion appeared.

A study on the Trap Density of Silicon Oxide (실리콘 산화막의 트랩 밀도에 관한 연구)

  • 김동진;강창수
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.1
    • /
    • pp.13-18
    • /
    • 1999
  • The trap density by the stress bias in silicon oxides with different thicknesses has been investigated. The trap density by stress bias was shown to be composed of on time current and off time current. The on time trap density was composed of dc current. The off time trap density was caused by the tunneling charging and discharging of the trap in the interfaces. The on time trap density was used to estimate to the limitations on oxide thicknesses. The off time trap density was used to estimate the data retention in nonvolatile memory devices.

  • PDF

Power Density Maximization of the Brushless DC Generator by Controlling the Optimal Current Waveform (최적 전류파형제어를 통한 브러시리스 DC 발전기의 출력밀도 최대화에 관한 연구)

  • 이형우
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.7
    • /
    • pp.430-436
    • /
    • 2004
  • This paper presents an advanced control technique for power density maximization of the Brushless DC (BLDC) generator by using the linear tracking method. In a generator of given rating, the weight and size of the system affect the fuel consumption directly. Therefore, power density is one of the most important issues in a stand-alone generator. BLDC generator has high power density in the machine point of view and additional increases of power density by control means can be expected. Conventional rectification methods cannot achieve the maximum power possible because of hon-optimal current waveforms. The optimal current waveform to maximize power density and minimize machine size and weight in a nonsinusoidal power supply system has been derived, incorporated in a control system, and verified by simulation and experimental work. A new simple algebraic method has been proposed to accomplish the proposed control without an FFT which is time consuming and complicated.