• 제목/요약/키워드: Current conditioning

검색결과 360건 처리시간 0.021초

멸티형 공조/냉동시스템의 증발기 과열도 제어 (Evaporator Superheat Control of a Multi-type Air-Conditioning/Refrigeration System)

  • 김태섭;홍금식;손현철
    • 에너지공학
    • /
    • 제10권3호
    • /
    • pp.253-265
    • /
    • 2001
  • 본 논문은 멀티형 공조/냉동시스템의 증발기의 과열도(증발기 2상영역과 출구영역의 냉매기 온도차)제어를 위한 모델링과 PI제어에 관한 연구이다. 먼저, 제어기 설계를 목적으로 하여 압축기, 응축기, 증발기 그리고 전자식 팽창밸브의 동특성이 수학적으로 모델링된다. 증발기에서의 일정한 크기의 과열도 발생을 제어목적으로 한정한 후 전자식 팽창밸브의 전류입력으로부터 증발기의 2상영역과 과열영역에서의 관벽의 온도로의 전달함수들이 유도된다. 비례적분 제어기의 폐루프시스템의 안정성과 제어성능은 Nyquist 안정성 판별법에 의해 분석된다. 시뮬레이션 결과가 제시된다.

  • PDF

소규모 발전용 스크롤 팽창기 성능시험 (Performance Test of Scroll Expander for Micro-Power Generation)

  • 김현진;박익서;라필찬
    • 설비공학논문집
    • /
    • 제17권4호
    • /
    • pp.325-332
    • /
    • 2005
  • This paper addresses the development of a scroll expander for power generation from relatively low temperature steam source. It has a double-sided orbiting scroll member so that no thrust bearing is needed to support the base plate of the orbiting scroll. Three power transmission shafts are placed at the periphery of the orbiting scroll base plate, and these shafts can also function as anti-rotation devices. Final output is obtained from the main central shaft engaged with the three power transmission shafts through gear assembly. The clearance between the fixed and orbiting scroll elements was estimated by comparing measurement of the mass flow rate with calculation results of a computer simulation. Due to large clearance, the expander total and volumetric efficiencies were measured to be $34\%\;and\;43\%$, respectively. It has been shown through the computer simulation that the total and volumetric efficiencies could be improved to $65\%\;and\;83\%$, respectively, if the current clearance is reduced by half.

경사진 원형관내에서의 강제대류비등 열전달에 대한 실험적 연구 (An Experimental Study on the Convective Boiling in Inclined Tubes)

  • 이홍욱;이준식;박군철
    • 설비공학논문집
    • /
    • 제13권8호
    • /
    • pp.674-681
    • /
    • 2001
  • An experiment is conducted to investigate the effect of the inclination angle on convective boiling heat transfer of a uniformly heated tube. The test section used is a stainless steel tube with10.7mm in inner diameter. The hating length is 3m and is heated directly by an AC current. The test fluid is R-113. Experiment are carried out with mass flow rates of 300, 500 and $700\;kg/m^{2}s$, and heat fluxes varying from 5 to 65 kW/$m^2$. The inclination angles of the tube are $0^{\circ},\;5^{\circ},\;11^{\circ}\;and\;25^{\circ}$. the circumferential temperature variation at low quality region and the location of dryout at high quality region are mainly observed. Circumferential anisothermality occurring at low mass flow rate and low quality conditions is gradually reduced with the increase in the inclination angle and finally disappears at the inclination angle of $25^{\circ}$. Critical quality where dryout is initiated is seriously influenced by the inclination angle. Wall temperature after critical quality is also affected by the inclination angle.

  • PDF

밀도계를 이용한 비추출식 냉동기유농도 측정에 관한 연구 (An investigation on the in si·tu measurement of the oil-concentration with densimeter)

  • 김상현;김창년;박영무
    • 설비공학논문집
    • /
    • 제11권1호
    • /
    • pp.31-37
    • /
    • 1999
  • In order to predict thermodynamic performance of refrigeration system, it is required to know the oil concentration of the refrigerant/oil mixture. The current method to measure the oil concentration is to extract the working mixture and then to measure the oil weight. However, it is Quite necessary to estimate oil concentration without any extraction of the working fluid. In this study a new method and working equation is presented as follows. It is based on the measurement of spedific gravity and temperature : $$C=a+b{\times}t+c{\times}t^2+(d+e{\times}t+f{\times}t^2){\times}SG$$ C is oil concentration, t is temperature($^{\circ}C$), SG is specific gravity of mixture and a~f is coefficients. The oil concentration ranges over 0~12 wt% and the temperature ranges over $20{\sim}50^{\circ}C$. The specific gravity and temperature are measured using the on-line densimeter and thermometer. This working equation enables to predict the oil concentration without any extraction of the mixture. This equation can be applied for R-12/Naphthenic oil and R-134a/POE oil oiquid mixtures.

  • PDF

사이클론 내 유동특성 및 미세입자 집진효율에 대한 수치해석적 연구 (A Numerical Analysis on the Flow Characteristics and the Collection Efficiency for Fine Particles in a Cyclone)

  • 용정권;김창녕;조영민
    • 설비공학논문집
    • /
    • 제20권2호
    • /
    • pp.144-153
    • /
    • 2008
  • A numerical analysis has been carried out to examine the flow characteristics and the collection efficiency for fine particles in a cyclone using Computational Fluid Dynamics (CFD) technique. The cyclone with the cylinder diameter of 60 mm has been considered for the investigation of the particle collection in a relatively smaller cyclone with somewhat higher inlet air velocities. Fundamental air flow patterns for different inlet velocities have been calculated and then the motions of particles of different sizes have been obtained. The calculated collection efficiencies for fine particles are compared with the experimental results, which shows a good agreement. The current result can be used for the design of cyclones with high collection efficiency.

주거건물의 개별급탕방식 환탕배관 적용에 따른 급탕성능 평가에 관한 연구 (A Study on the Performance Evaluation of Recirculation System for Individual Hot Water Supply System in Residential Buildings)

  • 차민철;여명석;석호태
    • 설비공학논문집
    • /
    • 제19권12호
    • /
    • pp.857-864
    • /
    • 2007
  • In the current residential building, hot water supply system consumes the second largest energy in order to make the thermal comport condition of residential space. The more residential environment improves the more the demand for hot water and water consumption is increasing gradually. So this study examines the possibility of applying the recirculation for individual hot water supply system compared with the existing method for waiting time for hot water, wasted water and energy consumption. The results are as follows. (1) In case of recirculation system method the waiting time for hot water can be reduced up to $69\sim85%$ in spring and fall period and so dose up to $77\sim85%$ in winter period. (2) The total wasted water has a little change compared with the existing method which can make the total wasted water reduced about $77\sim86%$. (3) The efficiency of hot water supply system can be improved, if the method which blocks the inflow of cold water is applied, when return pump is operated to recirculate hot water in recirculation system.

R-410A 비등열전달에 미치는 미세관경 0.5mm와 3.0mm의 영향 (Flow Boiling Heat Transfer of R-410A in 0.5mm & 3.0mm Diameter Horizontal Tube)

  • ;최광일;오종택
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.154-159
    • /
    • 2008
  • Two-phase flow boiling heat transfer of R-410A in horizontal small tubes was reported in the present experimental study. The local heat transfer coefficients were obtained over a heat flux range of 5 to 40 kW/$m^2$, a mass flux range of 170 to 600 kg/$m^2s$, a saturation temperature range of 3 to $10^{\circ}C$, and quality up to 1.0. The test section was made of stainless steel tubes with inner diameters of 0.5 and 3.0 mm, and lengths of 330 and 3000 mm, respectively. The section was heated uniformly by applying a direct electric current to the tubes. The effects on heat transfer of mass flux, heat flux, inner tube diameter, and saturation temperature were presented. The experimental heat transfer coefficient is compared with six existing heat transfer coefficient correlations. A new boiling heat transfer coefficient correlation based on the superposition model for R-410A in small tubes was developed with mean deviation of 10.13%.

  • PDF

마이크로핀관의 확관 전후 증발열전달 특성에 관한 실험적 연구 (An Experimental Study on Evaporative Heat Transfer Characteristics in Micro-Fin Tubes Before and After Expansion Process)

  • 전상희;황윤욱;윤석호;김민수
    • 설비공학논문집
    • /
    • 제12권10호
    • /
    • pp.932-940
    • /
    • 2000
  • An experimental study on evaporative heat transfer characteristics in micro-fin tubes before and after expansion process has been performed with R-22. Single-grooved micro-fin tubes with outer diameter of 9.52 mm were used as test sections, and it was uniformly heated by applying direct current to the test tubes. Experiments were conducted at mass flow rates of 20 and 30 kg/hr. For each mass flow rate condition, evaporation temperature was set at 5 and $15^{\circ}C$and heat flux was changed from 6 to 11 kW/$m^2$ The evaporative heat transfer coefficient of micro-fin tubes after expansion is decreased because of the crush of fins and enlargement of inner diameter compared to that before expansion. Convective boiling effect decreased remarkably at higher quality range in the micro-fin tube after expansion, and the difference of the heat transfer coefficient in micro-fin tubes before and after expansion was greater for higher quality region. The evaporative heat transfer coefficient of the micro-fin tube after expansion was 19.9% smaller on the average than that before expansion.

  • PDF

GM냉동기를 이용한 수소액화 시스템의 액화량 예측 (Prediction of liquid amount in hydrogen liquefaction systems using GM refrigerator)

  • 박대종;장호명;강병하
    • 설비공학논문집
    • /
    • 제11권3호
    • /
    • pp.349-358
    • /
    • 1999
  • Thermodynamic cycle analysis has been performed to maximize the liquid amount for various hydrogen liquefaction systems using GM(Gifford-McMahon) refrigerator. Since the present authors' previous experiments showed that the liquefaction rate was approximately 5.1mg/s in a direct contact with a commercial GM refrigerator, the purpose of this study is to predict how much the liquefaction rate can be increased in different configurations and with improved heat exchanger performance. The optimal operating conditions have been analytically sought with real properties of normal hydrogen for the single-stage GM precooled L-H(Linde-Hampson) system, the two-stage GM direct contact system, the two-stage GM precooled L-H system and the two-stage helium GM-JT (Joule-Thomson) system. The maximum liquefaction rate has been predicted to be only about 7 times greater than the previous experiment, when the two-stage precooling is employed and the effectiveness of heat exchangers approaches to 99.0%. It is concluded that the liquefaction rate is limited mainly by the cooling capacity of the current GM refrigerators and a larger scale of hydrogen liquefaction is possible with a greater capacity of cryocooler at 60-70 K range.

  • PDF

An investigation on the in si.tu measurement of the oil-concentration

  • Kim, Chang-Nyeun;Park, Young-Moo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제8권2호
    • /
    • pp.80-88
    • /
    • 2000
  • In order to predict thermodynamic performance of refrigeration system, it is required to know the oil concentration of the refrigerant/oil mixture. The current method is to extract the working mixture and then to measure the oil weight. In this study, oil concentration is measured in si.tu way without any extraction of the working fluid. Based on the measurement, a working equation is presented as follows, C=a +b x t +c x $t^2$ +(d + e x t +f x $t^2$) x SG. C is oil concentration, t is temperature($^{\circ}C). SG Is specific gravity of mixture and a~f is coefficients The oil concentration ranges over 0~l2 wt% and the temperature ranges over 20~50$^{\circ}C. The specific gravity and temperature are measured using the on-line densimeter and thermometer. This working equation enables to predict the oil concentration without any extraction of the mixture. This equation can be applied for R-12/Naphthenic oil and R-134a/P0E oil liquid mixtures.

  • PDF