• Title/Summary/Keyword: Current conditioning

Search Result 360, Processing Time 0.024 seconds

Evaporating Heat Transfer Characteristics of R-l34a in a Horizontal Smooth Channel

  • Pamitran, A.S.;Choi, Kwang-Il;Oh, Jong-Taek;Oh, Hoo-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.4
    • /
    • pp.156-165
    • /
    • 2006
  • Convective boiling heat transfer coefficients were measured in a horizontal minichannel with R-l34a. The test section was made of stainless steel tube with an inner diameter of 3.0 mm and a length of 2m. It was uniformly heated by applying electric current directly to the tube. Local heat transfer coefficients were obtained for heat fluxes from 10 to $40kW/m^2$, mass fluxes from 200 to $600kgT/m^2s$, qualities up to 1.0, and the inlet saturation temperature of $10^{\circ}C$. The experimental results were mapped on Wojtan et $al.'s^(7)$ and Wang et $al.'s^(8)$ flow pattern maps. The nucleate boiling was predominant at low vapor quality whereas the convective boiling was predominant at high vapor quality. Laminar flow appeared in the flow with minichannel. The experimental results were compared with six existing two-phase heat transfer coefficient correlations. A new boiling heat transfer coefficient correlation based on the superposition model for refrigerants was developed with mean and average deviations of 10.39% and -3.66%, respectively.

A Study on Performance Improvement Measures of Pressurized Smoke Control Systems for Exit Passageways of High-Rise Buildings (고층건축물의 피난경로 가압제연시스템 성능개선대책에 관한 연구)

  • Son, Bong-Sae;Kim, Jin-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.703-714
    • /
    • 2009
  • One of the biggest problems in smoke control systems for high-rise buildings is stack effect, but there are no recognized methods or measures to solve the problem of stack effect as yet. The stack effect can be overcome by forming the uprising current inside the stair hall properly, but there is a limit to the height in supplying into the stair hall the smoke control air volume to be supplied to a floor in case of escape from fire. The limit to the height can be extended by over-coming the stack effect by pressurizing the stair hall and the ancillary room simultaneously. It can also be anticipated that the stack effect can be overcome by connecting the air supply shaft to the stair hall at the top. As a result of computer simulations using a network type of tool, it is found that adequate performance can be achieved by pressurizing the stair hall only for a building of 190m or less, and up to 360m when pressurizing the stair hall and the ancillary room simultaneously. In all those cases, however, an overpressure venting damper is required which operates within a suitable range for venting the overpressure outside.

Performance Improvement of a Paper Enthalpy Exchange Element by Impregnation of the Spacer (골심지의 흡습제 함침에 의한 종이 재질 판형 전열교환 소자의 성능 향상)

  • Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.3
    • /
    • pp.142-147
    • /
    • 2017
  • Improvement of the enthalpy exchange element's energy efficiency is of current interest from anenergy-saving viewpoint. In this study, a LiCl-impregnated spacer was devised as a means to improve the performance of the enthalpy exchange element. Two samples were tested : one with and one without impregnated spacers of $338{\times}338{\times}380mm$ sizes with 2.0 mm channel spacing. The results showed that the temperature efficiencies of the two samples were approximately the same. The humidity efficiency, however, was strongly affected by the LiCl impregnation. The impregnated sample yielded a 9% higher humidity efficiency under cooling and the difference increased to 14% under aheating condition. It was anticipated that more moisture would beadsorbed on the LiCl-impregnated spacers, which was delivered to their roots and eventually to the air in neighboring channels. Separate moisture adsorption tests revealed that both the adsorption rate and the amount of the adsorbed moisture are higher for the LiCl-impregnated specimen.

A study of residential solar airconditioning system using bidirectional PWM converter (양방향성 PWM컨버터를 이용한 가정용 태양광 에어컨 시스템에 관한 연구)

  • 유권종;송진수;황인호;김홍성;고재석;최규하;김한성
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.358-364
    • /
    • 1996
  • Recently, much power demand from domestic power consumer is weakening the allowable power reserve margin in summer, especially at midday for one day due to a steep increase of air cooling loads such as air conditioner. Therefore solar airconditioning system can'be considered as one of the best remedies to meet the increase of peak power. Generally in solar air conditioning system, the diode rectifier is used to build up DC link voltage from AC source. The diode rectifier is simple and cheap but it brings out the problems of low power factor and plentiful harmonics at the AC source. Also It can derate the utilization rate of solar energy because the reverse of power flow cannot be made. Hence, in this paper to overcome the peak power problem in summer and to endure good AC input characteristics, solar air conditioning system using the PWM converter is proposed. As results, obtained are the characteristics of the PWM converter such as low distorted current waveform, high power factor and bidirectional power control. And also the stability of proposed system is verified by examining the dynamics of step load change and power reversal testing. (author). refs., figs., tabs.

  • PDF

Performance of Crystalline Si Solar Cells with Temperature Controlled by a Thermoelectric Module (열전소자 온도조절법을 이용한 결정형 실리콘 태양전지의 성능 측정)

  • Heo, Kimoo;Lee, Daeho;Lee, Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.375-379
    • /
    • 2015
  • A proper estimate of solar cell efficiency is of great importance for the feasibility analysis of solar cell power plant development. Since solar cell efficiency depends on temperature, several methods have been introduced to measure it by operating temperature modulation. However, the methods either rely on the external environment or need expensive equipment. In this paper, a thermoelectric module was used to control the operating temperature of crystalline silicon solar cells effectively and precisely over a wide range. The output characteristics of crystalline silicon solar cells in response to operating temperatures from $-5^{\circ}C$ to $100^{\circ}C$ were investigated experimentally. Their efficiencies decreased as the temperature rose, since the decrease in the open circuit voltage and fill factor exceeded the increase in the short circuit current. The maximum power temperature coefficient of the single crystalline solar cell was more sensitive to temperature change than that of the polycrystalline solar cell.

Boiling Heat Transfer Characteristics of R-410A in $300{\mu}m$ Horizontal Smooth Microchannel ($300{\mu}m$ 수평미세관내 R-410A의 비등열전달 특성)

  • Choi, Kwang-Il;Ardiyansyah, Ardiyansyah;Pamitran, A.S.;Oh, Jong-Taek
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.262-268
    • /
    • 2008
  • The present paper dealt with flow heat transfer characteristics of R-410A vaporization in horizontal smooth microchannel. The test sections were made of stainless steel tube with inner diameters of 300 mm and length of 300 mm. The refrigerant was supplied with mass flux range of 260-600 kg/$m^2s$ and applied under operating heat flux range of 5-20 kW/$m^2$ using a direct electric current heating method. The in let saturation temperature was set at $10^{\circ}C$ and vapor quality up to 1.0. The influences of mass flux, heat flux and inner tube diameter on local heat transfer coefficients were presented. Comparison with existing heat transfer coefficient correlations was performed. An improved heat transfer coefficient correlation for refrigerant vaporization in microchannel based on superposition model was developed with a mean deviation of 14.01%.

  • PDF

An Experimental Study on the Characteristics of Evaporative Heat Transfer of Carbon Dioxide (이산화탄소의 증발열전달 특성에 관한 실험적 연구)

  • 조은석;윤석호;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.1
    • /
    • pp.38-45
    • /
    • 2002
  • Evaporative heat transfer characteristics of carbon dioxide have been investi- gated by experiment. The experiments have been carried out for a seamless stainless steel tube of the outer diameter of 9.55 mm, the inner diameter of 7.75 mm and the length of 5.0 m. Direct heating method was used for supplying heat to the refrigerant where the test tube was uniformly heated by electric current which was applied to the tube wall. Experiments were conducted with$CO_2$of purity 99.99% at saturation temperatures of 0.0 to 10.5$^{\circ}C$, heat fluxes of 12 to 27kW/$m^2$s and mass fluxes of 212 to 530 kg/$m^2$s. The heat transfer coefficients of $CO_2$are decreased as the vapor quality increases and these phenomena are explained by dimensionless Weber and Bond numbers. The heat transfer coefficients of$CO_2$increase when the heat and mass fluxes increase, and the saturation temperature effects are minor in the test range of this study. The present experimental data are compared with six renowned correlations with root-mean-squared deviations ranging from 23.0 to 94.9% respectively.

Effect of the Thermoelectric Element Thickness on the Thermal Performance of the Thermoelectric Micro-Cooler (마이크로 열전냉각기의 열성능에 대한 열전소자 두께의 영향)

  • Lee Kong-Hoon;Kim Ook-Joong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.3
    • /
    • pp.211-217
    • /
    • 2006
  • The three-dimensional numerical analysis has been carried out to figure out the effect of the thermoelectric element thickness on the thermal performance of the thermo-electric micro-cooler. The small-size and column-type thermoelectric cooler is considered. It is known that tellurium compounds currently have the highest cooling performance around the room temperature. Thus, in the present study, $Bi_{2}Te_{3}$ and $Sb_{2}Te_{3}$ are selected as the n- and p-type thermoelectric materials, respectively. The thermoelectric leg considered is less than $20{\mu}m$ thick. The thickness of the leg may affect the thermal and electrical transport through the interfaces between the leg and metal conductors. The effect of the thermoelectric element thickness on the thermal performance of the cooler has been investigated with parameters such as the temperature difference, the current, and the cooling power.

An Experimental Study on the Pumping Characteristics of Diffuser/Nozzle Based Piezoelectric Micropumps with Different Geometries and Operating Conditions (압전 구동방식 마이크로 펌프에서 기하학적 형상과 작동조건에 따른 점핑특성에 대한 실험적 연구)

  • Yong, Jung-Kwon;Kim, Chang-Nyung;Kim, Chin-Uck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.1
    • /
    • pp.33-40
    • /
    • 2009
  • In the present experimental study, the pumping performances of diffuser/nozzle based piezoelectric micropumps are estimated with different operating factors and geometries. Here, the effects of the input voltage and frequency on the pumping performances have been examined together with the influences of the positions of the inlet and outlet. The results show that the flow rate of the micropump is larger with larger input voltage with the largest flow rates for the frequency to be close to 6.0 Hz all through the current experimental study. Also, it has been found that the positions of the inlet and outlet affect much on the performance of the piezoelectric micropumps. Error estimation has been carried out for the evaluation of the pumping performance in association with the uncertainty of the measurement.

Suggestion for a New Exergy-Based Heat-Tariff Assessment for a District-Heating System (엑서지를 이용한 지역난방 열요금 제도 제안)

  • Moon, Junghwan;Yoo, Hoseon;Lee, Jae-Heon;Moon, Seungjae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.4
    • /
    • pp.202-211
    • /
    • 2017
  • In this study, the exergy that can be reflected in the energetic and economic values was used to assess the heat tariff of a district heating (DH) system instead of the enthalpy. It is difficult to directly apply the exergy to the current heat-charge system because of the complicated calculation; therefore, the difference between the supply and return temperatures was converted to the exergy-temperature difference for the ease of the heat-amount calculation. As a result of the exergy analysis for a DH substation, the exergy-temperature difference did not affect the surrounding temperature and pressure loss. The supply temperature and the maximum difference between the supply temperature and the return temperature exerted the main effect on the exergy-temperature difference. The new heat charge of a DH user was slightly reduced in winter compared with the previous charge, but the heat charges in the other seasons are almost the same. It is concluded from the assessment of the heat tariff for which the exergy is used that this tariff is more feasible for both DH suppliers and consumers compared with enthalpy.