• Title/Summary/Keyword: Current Velocity

Search Result 168, Processing Time 0.11 seconds

An Estimation Of Average Current Velocity In The Western Channel Of The Korea Strait From Mean Sea Level Data

  • Lee, Jae Chul;Jung, Chang Hee
    • 한국해양학회지
    • /
    • v.12 no.2
    • /
    • pp.67-74
    • /
    • 1977
  • With the serial observation data and the tidal records at Busan and Izuhara from 1966 to 1973, the geostrophic current velocity and its relation to the difference of mean sea level of both sides were studied in order to estimate indirectly the average current velocity from the tidal observations. The results shows that the current velocity is estimated by the relationship V=4.016(H-98.3) with the 95% confidence limits of V 4.2 cm/sec. Ther relationship between the observed current velocity and the simultaneous daily mean sea level difference shows a similar result, V=4.717(H-99.6). The two equations were applied to the evaluation of annual variations of current velocity from the average monthly mean sea level data of both stations.

  • PDF

Estimation of Ocean Current Velocity near Incheon using Radarsat-1 SAR and HF-radar Data

  • Kang, Moon-Kyung;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.421-430
    • /
    • 2007
  • This paper presents the results of the ocean surface current velocity estimation using 6 Radarsat-1 SAR images acquired in west coastal area near Incheon. We extracted the surface velocity from SAR images based on the Doppler shift approach in which the azimuth frequency shift is related to the motion of surface target in the radar direction. The Doppler shift was measured by the difference between the Doppler centroid estimated in the range-compressed, azimuth-frequency domain and the nominal Doppler centroid used during the SAR focusing process. The extracted SAR current velocities were statistically compared with the current velocities from the high frequency(HF) radar in terms of averages, standard deviations, and root mean square errors. The problem of the unreliable nominal Doppler centroid for the estimation of the SAR current velocity was corrected by subtracting the difference of averages between SAR and HF-radar current velocities from the SAR current velocity. The corrected SAR current velocity inherits the average of HF-radar data while maintaining high-resolution nature of the original SAR data.

Estimation on Physical Habitat Suitability of Benthic Macroinvertebrates in the Hwayang Stream (화양천 저서성 대형무척추동물의 물리적 서식처 적합도 산정)

  • Kim, Ye Ji;Kong, Dongsoo
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.10-25
    • /
    • 2018
  • This study was conducted to estimate the habitat suitability of 17 benthic macroinvertebrate taxa in the Hwayang stream. Habitat Suitability Index (HSI) of benthic macroinvertebrates from the Hwayang stream was developed based on three physical habitat factors which include current velocity, water depth, and the substrate. The Weibull model was used as a probability density function to analyze the distribution of individual abundance by physical factors. The number of species and the total individual abundance increased along with the increase in current velocity. By means of Canonical Correspondence Analysis (CCA), the relative importance of each factor was determined in the following order: current velocity, water depth, and the mean diameter. The results depicted that, the most influential factor in the growth of benthic macroinvertebrates in the Hwavang system was current velocity. After comparing the analyzed results from the Hwayang stream with the resukts from the Gapyeong stream, the integrated HSI was drawn. The results indicated that current velocity and substrate had similar distributions of HSI in the two streams. This was due to the addition of unmeasured data from previous surveys, or the fact that benthic macroinvertebrates adapted to deeper waters in the Hwayang Stream. Most taxa showed a clear preference for a fast current velocity, deep water depth and coarse substrate except Baetiella, Epeorus, (mayflies), and Hydropsyche (caddisfly).

A Study on Current, Velocity, Position Gain Tuning Technique of Servo Position Controller using Simulation (시뮬레이션을 이용한 서보 위치제어기의 전류, 속도, 위치이득 동조기법에 관한 연구)

  • Park, Ki-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.634-640
    • /
    • 2011
  • When a servo position controller of a robot or a driving units is composed of a PID controller, servomechanism which is modelled is composed of current, velocity and position control loops. After this model is simulated, the technique operating gain of each controller is suggested. The model consists of current, velocity and position controllers from the inside to the outside gradually. Also, to combine velocity and position controllers with 2 order system, simulation is performed after current controllers are composed, which are able for current loop to work ideally. If a current controller is treated with constant, it is possible for velocity and position controller to consist of controller into 2 order system. The technique is verified by applying T-company servo motor which is much more applied to current, velocity and position controller robots.

Improvement of Current Velocity Estimation Method in an ADCP (ADCP에서의 유속 추정 방법 개선에 관한 연구)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1818-1825
    • /
    • 2017
  • An Acoustic Doppler Current Profiler(ADCP) measures the current velocity and analyzes the degree of turbulence using Doppler effects of ultrasonic waves. Therefore, the autocorrelation or FFT spectrum estimates are obtained for extraction of current velocity in each spatial region. However, if the correlation method does not satisfy the assumption that the return signal spectra are symmetric Gaussian, the large bias errors can occur. Also, the accurate estimation of autocorrelation or FFT spectrum is difficult due to the short acquisition interval when the rapid changes of current velocity occur. Thus, in this paper, the estimation method of the autoregressive spectrum peak is suggested for the accurate current velocity measurement of both symmetric and asymmetric spectra. It is shown that estimation quality can be improved using the suggested method comparing with the conventional methods. Many return signals under the various environment are simulated and the results are compared and analyzed for evaluation of the suggested method.

Estimation on the Physical Habitat Suitability of Benthic Macroinvertebrates in the Gapyeong Stream (가평천 저서성 대형무척추동물의 물리적 서식처 적합성 평가)

  • Kong, Dongsoo;Kim, Ah Reum
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.311-325
    • /
    • 2017
  • Habitat suitability index (HSI) of 17 benthic macroinvertebrate taxa, which were lotic insects of generic category except Potamanthidae in mayfly, was developed for three physical habitat factors (current velocity, water depth and substrate) based on an ecological monitoring in a Korean stream (Gapyeong). Weibull model was used as a probability density function to analyze the distribution of individual abundance related with physical factors, which showed it was so available. Number of species and total individual abundance increased along with the increase of current velocity and the mean diameter of substrate, and decreased along with the increase of water depth. Most taxa showed a clear preference for a fast current velocity, shallow water depth and coarse substrate except Ephemera, Potamanthidae (mayfly), and Plectrocnemia (caddisfly) which were rheophobic, potamophilic and lithophobious. Based on the canonical correspondence analysis, the relative importance of each factor was determined as follows: current velocity > substrate > water depth.

Investigating the Adjustment Methods of Monthly Variability in Tidal Current Harmonic Constants (조류 조화상수의 월변동성 완화 방법 고찰)

  • Byun, Do-Seong
    • Ocean and Polar Research
    • /
    • v.33 no.3
    • /
    • pp.309-319
    • /
    • 2011
  • This is a preliminary study of the feasibility of obtaining reliable tidal current harmonic constants, using one month of current observations, to verify the accuracy of a tidal model. An inference method is commonly used to separate out the tidal harmonic constituents when the available data spans less than a synodic period. In contrast to tidal constituents, studies of the separation of tidal-current harmonics are rare, basically due to a dearth of the long-term observation data needed for such experiments. We conducted concurrent and monthly harmonic analyses for tidal current velocities and heights, using 2 years (2006 and 2007) of current and sea-level records obtained from the Tidal Current Signal Station located in the narrow waterway in front of Incheon Lock, Korea. Firstly, the l-year harmonic analyses showed that, with the exception of $M_2$ and $S_2$ semidiurnal constituents, the major constituents were different for the tidal currents and heights. $K_1$, for instance, was found to be the 4th major tidal constituent but not an important tidal current constituent. Secondly, we examined monthly variation in the amplitudes and phase-lags of the $S_2$ and $K_1$ current-velocity and tide constituents over a 23-month period. The resultant patterns of variation in the amplitudes and phase-lags of the $S_2$ tidal currents and tides were similar, exhibiting a sine curve form with a 6-month period. Similarly, variation in the $K_1$ tidal constant and tidal current-velocity phase lags showed a sine curve pattern with a 6-month period. However, that of the $K_1$ tidal current-velocity amplitude showed a somewhat irregular sine curve pattern. Lastly, we investigated and tested the inference methods available for separating the $K_2$ and $S_2$ current-velocity constituents via monthly harmonic analysis. We compared the effects of reduction in monthly variability in tidal harmonic constants of the $S_2$ current-velocity constituent using three different inference methods and that of Schureman (1976). Specifically, to separate out the two constituents ($S_2$ and $K_2$), we used three different inference parameter (i.e. amplitude ratio and phase-lag diggerence) values derived from the 1-year harmonic analyses of current-velocities and tidal heights at (near) the short-term observation station and from tidal potential (TP), together with Schureman's (1976) inference (SI). Results from these four different methods reveal that TP and SI are satisfactorily applicable where results of long-term harmonic analysis are not available. We also discussed how to further reduce the monthly variability in $S_2$ tidal current-velocity constants.

Fish Passage Evaluations in the Fishway Constructed on Seungchon Weir (승촌보에 설치된 어도에서 어류의 이동성 평가)

  • Choi, Ji-Woong;Park, Chan-Seo;Lim, Byung Jin;Park, Jong-Hwan;An, Kwang-Guk
    • Journal of Environmental Science International
    • /
    • v.22 no.2
    • /
    • pp.215-223
    • /
    • 2013
  • The objective of this study was to evaluate fish passage efficiency, based on fish-trap monitoring methodology, in the fishway of Seungchon Weir, which was constructed on the lower region of Yeongsan River in 2011. Seasonal patterns and diel variations of fish movements, fish fauna, and compositions in the fishway were analyzed in relation to the current velocity and location of the trap-setting in the fishway. For the analysis, we conducted seven times surveys in 2012 on the fishway and also conducted intensive monitoring of the fishway as 3 hrs interval for the diel variations of fish fauna and compositions in the fishway. According to the fish-trap monitoring methodology, the total number of fish species was 13 species, which was a 43.3% of the total. Most dominant fish used the fishway was Squalidus chankaensis tsuchigae and the relative abundance of the species used the fishway was 33.5% of the total. The season and time zone (in diel variation) observed most frequently in the fishway were July and 18:00-21:00 PM, respectively. The fish movements and use-rates of fishway varied depending on the locations of trap-setting; Fish biomass and the number of species were statistically (p < 0.05) greater in the most right or left-sided traps than in the mid-traps. Also, fish movements and use-rates of fishway were influenced by current velocity on the fishway; fish in the fishway preferred the low current velocity (mean 0.71 m/sec) than the high current velocity (mean 1.13 m/sec). Further long-term studies should be monitored for the efficiency evaluations of the fishway.

Analysis of Physical Environmental Factors and the Structure of Fish Community in the Gapyeong Stream (가평천의 물리적 환경요인과 어류 군집구조 분석)

  • Kong, Dongsoo;Son, Se-Hwan;Kim, Jin-Young;Kim, Ah Reum;Kwon, Yongju;Kim, Jungwoo;Kim, Ye Ji;Min, Jeong Ki;Kim, Piljae
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.5
    • /
    • pp.587-599
    • /
    • 2017
  • Physical environmental factors (water depth, current velocity and substrate) and fish community were surveyed in the Gapyeong stream, Korea. The fish group of Gapyeong Stream was divided into three types. Lithophilic fish, Koreocobitis rotundicaudata and Pseudopungtungia tenuicorpa preferred shallow depth, low-velocity current, and coarse bed condition, whereas Coreoleuciscus splendidus and Microphysogobio longidorsalis were adapted to high-velocity current and bed materials. Nektonic fish, Zacco koreanus and Zacco platypus appeared in a wide range of physical conditions. Intermediate fish, Hemibarbus longirostris, Pungtungia herzi and Coreoperca herzi adapted to moderate water depths and current velocities. Among them, H. longirostris and C. herzi were adapt to various bed materials. C. splendidus, M. longidorsalis and P. herzi showed high niche overlap for current velocity, water depth and substrate with Z. koreanus and Z. platypus. The occurrence of M. longidorsalis in a relatively low-velocity current compared to Z. koreanus and Z. platypus suggests that the current velocity act as a isolation factor for these species. The competition, isolation and character displacement among these species investigated detail in the future. Based on canonical correspondence analysis, the relative importance of each environmental factor was determined as substrate > water depth > current velocity.

Wave information retrieval algorithm based on iterative refinement (반복적 보정에 의한 파랑정보 추출 기법)

  • Kim, Jin-soo;Lee, Byung-Gil
    • Journal of the Korea Industrial Information Systems Research
    • /
    • v.21 no.1
    • /
    • pp.7-15
    • /
    • 2016
  • Ocean wave parameters are important for safety and efficiency of operation and routing of marine traffic. In this paper, by using X-band marine radar, we try to develop an effective algorithm for collecting ocean surface information such as current velocity, wave parameters. Specifically, by exploiting iterative refinement flow instead of using fixed control schemes, an effective algorithm is designed in such a way that it can not only compute efficiently the optimized current velocity but also introduce new cost function in an optimized way. Experimental results show that the proposed algorithm is very effective in retrieving the wave information compared to the conventional algorithms.