• Title/Summary/Keyword: Current Control System

Search Result 5,085, Processing Time 0.044 seconds

Measurement strategy of a system parameters for the PI current control of the A.C. motor (교류 전동기의 PI 전류제어를 위한 시스템 파라미터 계측법)

  • Jung-Keyng Choi
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.223-229
    • /
    • 2023
  • This Paper propose the method that measure main system parameters for PI(proportional-integral) current control of a.c. motor adopting the vector control technique. For current control, the PI control input is could be tuning by several selective methods. Among the several methods, the method that using the main system parameters, wire resistance and inductance, are frequently used. In this study, the technique to dissect and measure these two system parameters through the results of simple feedback control. This analytic measurement method is measuring parameters step by step dissecting the results of P control using simple proportional feedback gain about the unit step or multiple step reference command. This strategy is an real time analytic measurement method that calculate current control gains of torque component and flux component both for vector control of A.C. motor without introducing the further measurement circuits and complex measuring algorithms.

A Study of Average Current Mode Control Boost Converter for Space Craft Power System (인공위성용 전원을 위한 평균전류형 제어 BOOST 컨버터에 관한 연구)

  • Kim, H.J.;Kim, Y.T.;Kim, I.G.;Choi, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.886-888
    • /
    • 1993
  • Recently current mode control is widely adopted in switching power converter because of inherent stablity and ability of parallel operating. There are several ways in current mode control. One of them, peak current control is chiefly employed. Peak current mode control converter usually senses and controls peak inductor current. But there is peak-to-average current errors. Therefore peak current control needs compensation ramp correcting the errors. Average current mode control eliminates these problems, and is constructed by simple structures. This paper will describe the behavior of a simple average current mode boost converter and introduce the design techniques.

  • PDF

Adaptive Digital Predictive Peak Current Control Algorithm for Buck Converters

  • Zhang, Yu;Zhang, Yiming;Wang, Xuhong;Zhu, Wenhao
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.613-624
    • /
    • 2019
  • Digital current control techniques are an attractive option for DC-DC converters. In this paper, a digital predictive peak current control algorithm is presented for buck converters that allows the inductor current to track the reference current in two switching cycles. This control algorithm predicts the inductor current in a future period by sampling the input voltage, output voltage and inductor current of the current period, which overcomes the problem of hardware periodic delay. Under the premise of ensuring the stability of the system, the response speed is greatly improved. A real-time parameter identification method is also proposed to obtain the precision coefficient of the control algorithm when the inductance is changed. The combination of the two algorithms achieves adaptive tracking of the peak inductor current. The performance of the proposed algorithms is verified using simulations and experimental results. In addition, its performance is compared with that of a conventional proportional-integral (PI) algorithm.

Model-based Optimal Control Algorithm for the Clamp Switch of Zero-Voltage Switching DC-DC Converter

  • Ahn, Minho;Park, Jin-Hyuk;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.323-333
    • /
    • 2017
  • This paper proposes a model-based optimal control algorithm for the clamp switch of a zero-voltage switching (ZVS) bidirectional DC-DC converter. The bidirectional DC-DC converter (BDC) can accomplish the ZVS operation using the clamp switch. The minimum current for the ZVS operation is maintained, and the inductor current is separated from the input and output voltages by the clamp switch in this topology. The clamp switch can decrease the inductor current ripple, switching loss, and conduction loss of the system. Therefore, the optimal control of the clamp switch is significant to improve the efficiency of the system. This paper proposes a model-based optimal control algorithm using phase shift in a micro-controller unit. The proposed control algorithm is demonstrated by the results of PSIM simulations and an experiment conducted in a 1-kW ZVS BDC system.

A.C. servo motor current control parameter measurement strategy using the three phase inverter driver (3상 인버터 구동기를 이용하는 교류 서보전동기의 전류제어 파라미터 계측법)

  • Jung-Keyng Choi
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.434-440
    • /
    • 2023
  • This paper propose the method that measure the main system parameters for current control of a.c. motor adopting the vector control technique. The automatical method that tuning PI control gains for current control of servo motors are used frequently through the information of main system parameters, wire resistance and inductance. In this study, the techniques to measure these two system parameters through the control of 3-phase inverter are presented. These control and measuring method are implemented by measuring output phase current obtained as a results of the step current control using simple proportional feedback input. Moreover, this method use freewheeling current of inverter at special switching mode for measuring inductance. This analytic strategy is could measure and calculate the system parameters without the complex measurement algorithm and new additional measuring circuits. That is could measure the total resistance and total inductance including wiring resistance and conduction resistance of switching devices using real driving circuits to control the motors.

A Study on Excitation System for Synchronous Generator using Current Mode Controlled PWM Converter (전류제어형 PWM컨버터를 이용한 동기발전기용 여자시스템에 관한연구)

  • 장수진;류동균;서민성;김준호;원충연;배기훈
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.151-156
    • /
    • 2002
  • The output voltage of Synchronous Generator is regulated constantly by field current control in excitation system. A synchronous generator is equipped with an automatic voltage regulator(AVR), which is responsible for keeping the constant output voltage under normal operating conditions about various levels. High frequency PWM converter (Current Mode Control Buck converter) type excitation system for synchronous generator is able to sustain output voltage level properly when the fault condition happened. This paper deals with the design and evaluation of the excitation system controller for a synchronous generator to improve the steady state and transient stability. The simulation and experimental results show that the proposed excitation system is improve the respons time by the AVR(automatic voltage regulator) of 50kW synchronous generator that is applied the current mode control excitation system.

  • PDF

A Study on the Auto Fuel Feeding Control System using Hall Sensor (홀 센서를 이용한 자동연료공급 제어장치에 관한 연구)

  • Kim, Gyu-Sung;Cho, Myung-Hyun
    • 전자공학회논문지 IE
    • /
    • v.43 no.3
    • /
    • pp.34-40
    • /
    • 2006
  • Usually, fluid or fuel supply device need space to need special sensor to control motor, attaches with ancillary equipment to attach sensor. Also, difficult point follows need signal line and other circuit etc. In this paper, used that proposed control system that use hall sensor to solve discomfort and problem and difference control principle of system happens in current flow according to motor action step. Also, could reduce breakdown by sensor establishment, reduce material costs and personnel expenses as well as control system superior. Auto-pumping system sees that will can apply, develop several kind of device that use system hereafter to all fluid supply systems through soft-ware adaptation.

Direct Torque Control System of a Reluctance Synchronous Motor Using a Neural Network

  • Kim Min-Huei
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.36-44
    • /
    • 2005
  • This paper presents an implementation of high performance control of a reluctance synchronous motor (RSM) using a neural network with a direct torque control. The equivalent circuit in a RSM, which considers iron losses, is theoretically analyzed. Also, the optimal current ratio between torque current and exiting current is analytically derived. In the case of a RSM, unlike an induction motor, torque dynamics can only be maintained by controlling the flux level because torque is directly proportional to the stator current. The neural network is used to efficiently drive the RSM. The TMS320C3l is employed as a control driver to implement complex control algorithms. The experimental results are presented to validate the applicability of the proposed method. The developed control system shows high efficiency and good dynamic response features for a 1.0 [kW] RSM having a 2.57 ratio of d/q.

Stability Analysis of Induction Motor Driven by Stator Voltage Controlled CSI (고정자전압제어 전류형 인버터에 의한 유도전동기 구동시스템의 안정도 해석)

  • Song, Joong-Ho;Yoon, Tae-Woong;Youn, Myung-Joong
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.1
    • /
    • pp.32-41
    • /
    • 1992
  • This paper presents a comprehensive study on the stability of several control schemes for the induction motor driven by current source inverters. A stator voltage controlled current source inverter drive system without a speed sensor is investigated in order to find appropriate control schemes, which are primarily based on direct or, alternatively, indirect frequency control scheme. It can be seen, especially that an introduction of the indirect frequency control method improves the inherent instability of the current source inverter drive system for the induction motor. The overall control systems with either voltage control loop or current and voltage control loops in addition to each frequency control scheme, are analyzed by utilizing the root locus method and simulated by computer to show the validity of this analysis.

The development of laser system for cancer (암치료용 레이저 시스템 개발)

  • 이동진;김주명;김선학;임현수
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.08a
    • /
    • pp.154-155
    • /
    • 2001
  • A laser system for therapy of cancer is proposed in this paper. In order to accuracy and statistical output control we used the constant current control method and designed the power source to protect the resonator from the over -current, rush-current and electrical fault. The most important things are the radiation type for cancer therapy in laser system, we developed the radiation type of cw, pulse, and burst pulse. The experimental result show that laser beam power increase linearly from 100mW to 300mW for input current increasing and the exposure time.

  • PDF