• Title/Summary/Keyword: Curing period

Search Result 344, Processing Time 0.022 seconds

Comparison of Standard Specification for the Curing of Cold Weather between Korea and China (한국과 중국의 한중 콘크리트 표준시방서의 보온양생 규정 비교)

  • Hu, Yun-Yao;Jeong, Jun-Taek;Lim, Gun-Su;Han, Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.131-132
    • /
    • 2023
  • In this paper, standard specification of heat curing section of cold weather concrete between Korea and China were compared. First, Korea concrete specification (KCS 14 20 40) stipulates that the application period is less than 4℃ per day or less than 0℃ per day right after pouring, but in China, the outdoor daily average temperature is less than 5℃ for five consecutive days. This is believed to be due to the difference in temperatures between Korea and China in winter. Next, in the case of Korea, KCS do not show that the concrete temperature in curing should be 5℃ or higher to prevent early frost damage and obtain the minimum required compressive strength. On the other hand, in the case of China, the specificaion does not show that the curing method is selected based on the concrete surface coefficient after considering the outdoor temperature. In addition, in Korea and China regulation, the temperature of the space during thermal curing was shown to be similar.

  • PDF

Studies on the Effect of Water Content, Curing Temperature and Grain Size Distribution of Soils on Unconfined Compressive Strength of Soil-Cement Mixtures. (함수비, 양생온도 및 흙의 입도가 Soil-Cement의 압축강도에 미치는 영향에 관한 연구(I))

  • 김재영;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4312-4322
    • /
    • 1977
  • In order to investigate the effect of the water content and the accelerated curing on the strength of the soil-cement mixtures, laboratory test of soil cement mixtures was performed at five levels of water content, four levels of accelerated curing temperatures, three levels of normal curing periods, and six levels of accelerated curing time. Also this study was carried out to investigate the effect of grain size distribution of 21 types of soils on the strength of soil-cement mixtures at four levels of cement content and three levels of curing time. The results are summarized as follows: 1. Optimum moisture content increased with increase of the cement content, but maximum dry density was changed ununiformly with cement content. Water content corresponding to the maximum strength was a little higher than the optimum moisture content along the increase of cement content. 2. In molding the specimens with the optimum moisture content, the maximum strength appeared at the wet side of the optimum moisture content. 3. According to increase of curing temperature as 30, 40, 50, and 60$^{\circ}C$, unconiiend compressive strength of soil-cement mixtures increased, the rate of increase at the early curing period was large, and approximately 120 hours was suifficient to harden soil-cement mixtures completely. 4. The strength of soil-cement mixtures at the curing temperature of 10$^{\circ}C$ decreased at the rate of 30 to 50 percent than at the curing temperature of 20$^{\circ}C$, and the strength of soil-cement mixtures at the curing temperature of 0$^{\circ}C$ increased a little with increase of curing time. 5. Although the strength of soil-cement mixtures seemed to be a little affected by the temperature difference between day time and night, it was recommended that reasonable working period was the duration from July to August of which average maximum temperature of Korea was approximately 30$^{\circ}C$. 6. Accelerated curing time corresponding to the normal curing time of 28-day was shorten with increase of curing temperature, also it was a little affected by the cement. Accelerated curing time that the strength of soil-cement mixtures for the cement of 9 percent and the curing temperature of 60was shorten with increase of curing temperature, also it was a little affected by the cement. Accelerated curing time that the strength of soil-cement mix- tures for the cement of 9 percent and the curing temperature of 60$^{\circ}C$ was 45 hours at the KY sample, 50 hours at the MH, 40 hours at the SS, and 34 hours at the JJ respectively. 7. Accelerated curing time was depended upon the grain size distribution of soil, it decreased with increase the percent passing of No. 200 sieve. 8. Relationship between the normal curing times and the accelerated curing times showed that there was a linear relationship between them, its slope decreased with increase of curing temperature. 9. The most reasonable soil of the soil-cement mixtures was the sandy loam which was a well graded soil. Assuming the base of road requiring 7-day strength of 21 kg/$\textrm{cm}^2$ being used, the soil-cement mixtures could be obtained with adding 6 percent of cement in such a sails S-7, S-8, S-9, S-10, S-11, S-12, S-13. 10. The regression equation between the 28-day and the 7-day strength was obtained as follow; q28=1.12q7,+6.5(r=0.96).

  • PDF

An Experimental Study on Electromagnetic Properties in Early-Aged Cement Mortar under Different Curing Conditions (양생조건에 따른 초기재령 시멘트 모르타르의 전자기 특성에 대한 실험적 연구)

  • Kwon, Seung-Jun;Song, Ha-Won;Maria, Q. Feng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.737-746
    • /
    • 2008
  • Recently, NDTs (Non-Destructive Techniques) using electromagnetic(EM) properties are applied to the performance evaluation for RC (Reinforced Concrete) structures. Since nonmetallic materials which are cement-based system have their unique dielectric constant and conductivity, they can be characterized and changed with different mixture conditions like W/C (water to cement) ratios and unit cement weight. In a room condition, cement mortar is generally dry so that porosity plays a major role in EM properties, which is determined at early-aged stage and also be affected by curing condition. In this paper, EM properties (dielectric constant and conductivity) in cement mortar specimens with 4 different W/C ratios are measured in the wide region of 0.2 GHz~20 GHz. Each specimen has different submerged curing period from 0 to 28 days and then EM measurement is performed after 4 weeks. Furthermore, porosity at the age of 28 days is measured through MIP (Mercury Intrusion Porosimeter) and saturation is also measured through amount of water loss in room condition. In order to evaluate the porosity from the initial curing stage, numerical analysis based on the modeling for the behavior in early-aged concrete is performed and the calculated results of porosity and measured EM properties are analyzed. For the convenient comparison with influencing parameters like W/C ratios and curing period, EM properties from 5 GHz to 15 GHz are averaged as one value. For 4 weeks, the averaged dielectric constant and conductivity in cement mortar are linearly decrease with higher W/C ratios and they increase in proportion to the square root of curing period regardless of W/C ratios.

Strength properties of lime-clay mixtures (석회 혼입 점토의 강도 특성)

  • Yur, Jae Ho;Kwon, Moo Nam;Goo, Jung Min;Kim, Hyun Ki
    • Current Research on Agriculture and Life Sciences
    • /
    • v.18
    • /
    • pp.61-69
    • /
    • 2000
  • This study was conducted to investigate most effective the optimum lime content for lime-clay modification. To achieve the aim, characteristics of compaction and compressive strength were tested by adding of 0, 5, 10, 15 and 20% lime (Hydrated lime) of dry weight of the clay. Distilled water was added 10, 15, 20 and 25% of dry weight of lime-clay mixture. In this test, the compressive strength of the specimens was measured according to the following curing period : 7, 21, 28, 35 and 49 days. The results are as follows. (1) As lime additive increased, the optimum moisture content of lime-clay mixture was increased and the maximum dry density was decreased. (2) The soil mixture of 20% of the moisture content and 10% of lime additive was shown the maximum compressive strength. (3) As curing period longer, the compressive strength was increased but after 21 curing days, the increasing rate of compressive strength was low as compared with earlier its value. (4) In the range of 20% of the moisture content, compressive strength of mixture of 10% lime additive increased twice compared with that of mixture of 0% lime additive. (5) All of the lime-clay are possible to use for an sub-base material and 20% of moisture content of lime-clay mixture is possible to use for a base material.

  • PDF

A Study on the Measurement System Design for the Resin Flow and Curing in the Vacuum Assisted Resin Transfer Molding(VARTM) Process Using the Long Period Fiber Bragg Grating (삽입된 장주기 광섬유 격자를 이용한 VARTM 공정에서의 수지이동 및 변형 과정 예측 시스템 설계에 관한 연구)

  • Yoon, Young-Ki;Chung, Seung-Hwan;Lee, Woo-Il;Lee, Byoung-Ho;Byun, Joon-Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.489-494
    • /
    • 2004
  • Long Period Gratings (LPG) is currently receiving considerable attention because of their consistent measuring results fur pressure, temperature, strain and flow. LPG is easier to prepare and has a high sensitivity compared with Fiber Bragg Gratings (FBG). In addition, this kind of optical fiber sensors could be used for implementations in various structures. In this paper, LPG was used to monitor in situ the resin flow and the curing process in VARTM (Vacuum Assisted Resin Transfer. Molding). In order to demonstrate the effectiveness of the method, FBG is inserted into the glass mat to monitor the resin flow using optical spectrum analyzer (OSA). The curing reactions in VARTM are also observed using the same method. From the results, the attenuation wavelength shift and the loss change of attenuation band can be obtained from the status of the RTM (Resin Transfer Molding) sample owing to the internal variations of the .effective index, temperature, and pressure. It is shown that the proposed LPG is more effective in monitoring the curing reaction than FBG.

Field Application of Insulation Curing Method with Double Bubble Sheets Subject to Cold Weather (이중버블시트를 이용한 단열양생공법의 한중콘크리트 현장적용)

  • Hong, Seak-Min;Baek, Dae-Hyun;Kim, Jong;Jeon, Chung-Kun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.57-60
    • /
    • 2008
  • This study investigated the results of insulation heat curing method using double layer bubble sheet in slab concrete and mass concrete in cold weather environment. First of all, when double bubble sheets are applied, it was shown that slab concrete was protected from early freezing by remaining between 6 and 15℃ even in case outside temperature drops -9℃ below zero until the 2nd day from piling, and in the case of mass concrete, with the maximum temperature difference between the center and surface less than 4℃, crack occurrence index was close to 2 and no hydration heat crack occurred by internal constraint. The insulation heat preservation curing method using the double bubble sheet applied in this field prevented early freezing owing to stable curing temperature management, deterring concrete strength development delay at low temperature, and obtained the needed strength. Also, it was proven that the method is highly effective and economic for cold weather concrete quality maintenance through curing cost reduction like construction period shortening and labor cost reduction, etc by reducing the process of temporary equipment installation and disassembling.

  • PDF

Field Application of Insulation Curing Method for the Concrete applying Double Layer Bubble Sheets Subjected to Cold Weather (이중버블시트를 이용한 단열보온 양생공법의 한중콘크리트 현장적용)

  • Hong, Seak-Min;Son, Ho-Jung;Oh, Chi-Hyun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.83-85
    • /
    • 2011
  • This study investigated the results of insulation heat curing method using double layer bubble sheet in concrete in cold weather environment. First of all, when double bubble sheets are applied, it was shown that concrete was protected from early freezing by remaining between 7℃ and 3℃ even in case outside temperature drops -7℃ below zero until the 3d day from piling. The insulation heat preservation curing method using the double bubble sheet applied in this field prevented early freezing owing to stable curing temperature management, deterring concrete strength development delay at low temperature, and obtained the needed strength. Also, it was proven that the method is highly effective and economic for cold weather concrete quality maintenance through curing cost reduction like construction period shortening and labor cost reduction, etc by reducing the process of temporary equipment installation and disassembling.

  • PDF

Mechanical Property of Fiber Reinforced Concrete according to the Change of Curing Method (양생방법 변화에 따른 섬유보강콘크리트의 역학적 특성)

  • Kim, Chun-Ho;Kim, Nam-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.67-73
    • /
    • 2016
  • When assessing crack initiation of fiber reinforced concrete, usually tensile strength or flexural strength is becomes indicator, but also depend on the curing effect take place during the production of specimen. In general, after conducting concrete specimen is cured by water at temperature $20{\pm}3^{\circ}C$ in laboratory, and accomplished the assessment of strength, but most of concrete structure is kept in drying condition after moist curing through the prescribed period. However, unlike these trends that technological advances have been made, influence of the difference of curing method on crack strength is not yet clear. Therefore, in this study, it is examined on the effect of curing methods affecting the mechanical property of fiber reinforced concrete, especially crack strength.

Field Application of Insulation Curing Method with Double Bubble Sheets Subject to Cold Weather (이중버블시트를 이용한 단열양생공법의 한중콘크리트 현장적용)

  • Hong, Seak-Min;Lee, Il-Sun;Baek, Dae-Hyun;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.25-28
    • /
    • 2009
  • This study investigated the results of insulation heat curing method using double layer bubble sheet in slab concrete in cold weather environment. First of all, when double bubble sheets are applied, it was shown that slab concrete was protected from early freezing by remaining between 5 and $l0^{\circ}C$ even in case outside temperature drops $-11^{\circ}C$ below zero until the 4nd day from piling. The insulation heat preservation curing method using the double bubble sheet applied in this field prevented early freezing owing to stable curing temperature management, deterring concrete strength development delay at low temperature, and obtained the needed strength. Also, it was proven that the method is highly effective and economic for cold weather concrete quality maintenance through curing cost reduction like construction period shortening and labor cost reduction, etc by reducing the process of temporary equipment installation and disassembling.

  • PDF

Strength Development of Mock-up Concrete Structure subjected to Extremely Low Temperature Condition Due to Curing Methods (극저온 조건에서의 양생방법 변화에 따른 실구조체 콘크리트의 강도발현 특성)

  • Jung, Eun-Bong;Jung, Sang-Hyeon;Ahn, Sang-Ku;Ko, Gyeong-Taek;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.47-49
    • /
    • 2012
  • Under this study, the characteristics of concrete intensity condition following the curing method under the extremely low temperature environment have been contemplated, and as a result, in the event of insulation + heat cable curing, the intensity and accumulated temperature accomplishment period is required for two times of requiring initial frost damage prevention than the case of heating + heat insulation curing method due to the insufficient calories supplied in general.

  • PDF