• Title/Summary/Keyword: Curing conditions

Search Result 695, Processing Time 0.025 seconds

The studies on wrinkle recovery improvement for silk fabrics (견직물의 방추성 개선연구)

  • 김병호;정진영
    • Journal of Sericultural and Entomological Science
    • /
    • no.11
    • /
    • pp.23-29
    • /
    • 1970
  • This experiment is to improve the wrinkle recovery (W.R.) of silk fabrics. The silk fabrics is creased very well, and the crease is the serious defection of it. This experiment is to improve the nature by use of formaldehyde on fabrics. The reagents used were HCl, CH$_3$COOH, CaC$_2$, HCHO, Na$_2$CO$_3$, NH$_4$OH, NaOH and NaHCO$_3$. The silk fabrics was treated, to compare 1 he influence of conditions, by varying the quantities of reagents and the temperature of solution, and the reaction time. The cotton fabrics and the viscose rayon were sunk with the silk at the same condition to be compared the influence. 1) Those of the most suitable temperature to improve for the better W.R. are 75$^{\circ}C$ for silk, 35-45$^{\circ}C$ for cotton, and no particular temperature under 75$^{\circ}C$ for viscose rayon. 2) The W.R. improvements after treated at the temperature of 1) were 11% for silk and 33.4% for cotton. 3) There are the best treating time for every fabrics. They were 60 to 90 min. for viscose rayon when HAC Ras used for solvent. It took, however, 60min. of the best time for silk, 120 min. for cotton, and 40 min. for viscose rayon when acetic anhydride instead of HAC was used. 4) It was possible to improve 16.6% of W.R. for silk at the most suitable treating time, 25.0% for cotton, and 13.3% for viscose rayon. 5) Acetic anhydride was rather more effective to improve W.R. of both silk and viscose rayon than HAC. 6) Treating time was also shorter in case of using acetic anhydride than HAC. 7) The improvement of W.R. were 8.3% for silk at the 10 to 14 ml. of HCHO the best volume, 21. 5% for cotton at 18m!. of HCHO, and 70% of for viscose rayon at 14 to 18ml. of HCHO. 8) The most effective quantity of HCI is 14 ml. for both silk and cotton. The W.R. improvement of silk was 22.2%, and that of cotton 19.5%. 9) The W.R. of 83.3% the best for silk and 61. 6% for cotton were gained when 4.2gr. of NaHCO$_3$ brings down the percent of W.R. for both silk and cotton. 10) The more NaOH and NH$_4$OH as neutralizing agents, the less effectivity of W.R. until the quantities of the reagents are reached to a special range which are 3. 3m!. for silk and 3.3-6.6 ml. for cotton, and then we can see the W.R. increasing as the quantities of reagents are increased. These facts were evident in case of silk and cotton. We can also see with this fact that the reminder of 〔OH$\^$-/〕 neutralizing 〔CH$\^$+/〕in solution makes it possible to treat formaldehyde on fabrics. 11) Low curing temperature was comparatively better for silk, and high temperature better for cotton. 12) The result of this experiment shows that the Improvement of W.R. for silk was possible to 94% which means 22% W.R. increase compared to the untreated silk. This effect also shows that the improvement to W '||'&'||' W (wash and wear) of silk will be possible.

  • PDF

Jet Lag and Circadian Rhythms (비행시차와 일중리듬)

  • Kim, Leen
    • Sleep Medicine and Psychophysiology
    • /
    • v.4 no.1
    • /
    • pp.57-65
    • /
    • 1997
  • As jet lag of modern travel continues to spread, there has been an exponential growth in popular explanations of jet lag and recommendations for curing it. Some of this attention are misdirected, and many of those suggested solutions are misinformed. The author reviewed the basic science of jet lag and its practical outcome. The jet lag symptoms stemed from several factors, including high-altitude flying, lag effect, and sleep loss before departure and on the aircraft, especially during night flight. Jet lag has three major components; including external de synchronization, internal desynchronization, and sleep loss. Although external de synchronization is the major culprit, it is not at all uncommon for travelers to experience difficulty falling asleep or remaining asleep because of gastrointestinal distress, uncooperative bladders, or nagging headaches. Such unwanted intrusions most likely to reflect the general influence of internal desynchronization. From the free-running subjects, the data has revealed that sleep tendency, sleepiness, the spontaneous duration of sleep, and REM sleep propensity, each varied markedly with the endogenous circadian phase of the temperature cycle, despite the facts that the average period of the sleep-wake cycle is different from that of the temperature cycle under these conditions. However, whereas the first ocurrence of slow wave sleep is usually associated with a fall in temperature, the amount of SWS is determined primarily by the length of prior wakefulness and not by circadian phase. Another factor to be considered for flight in either direction is the amount of prior sleep loss or time awake. An increase in sleep loss or time awake would be expected to reduce initial sleep latency and enhance the amount of SWS. By combining what we now know about the circadian characteristics of sleep and homeostatic process, many of the diverse findings about sleep after transmeridian flight can be explained. The severity of jet lag is directly related to two major variables that determine the reaction of the circadian system to any transmeridian flight, eg., the direction of flight, and the number of time zones crossed. Remaining factor is individual differences in resynchmization. After a long flight, the circadian timing system and homeostatic process can combine with each other to produce a considerable reduction in well-being. The author suggested that by being exposed to local zeit-gebers and by being awake sufficient to get sleep until the night, sleep improves rapidly with resynchronization following time zone change.

  • PDF

Effects of Harvesting Methods on Properties of Cured-leaves in Aromatic Tobacco Production (향끽미종의 수확방법이 건조엽특성에 미치는 영향)

  • 이철환;조명조
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.2
    • /
    • pp.177-183
    • /
    • 1989
  • Lower leaves of aromatic tobacco are also much lower in Quality than upper leaves. So feasibility test of no harvesting and curing of lower leaves was conducted under high planting density and high nitrogen conditions with conventional cultural system. Effect of harvesting time on yield and Quality were investigated under 2 nitrogen levels. Among harvesting methods of conventional harvest with priming under high planting density, no-harvest of first priming, removal of lower leaves which relevant to first prime stalk before maturity, no-harvest of first and second priming. no-harvesting or pruning of first prime stalk before maturity was best in yield, price and in crude income. The shortor the harvest period became, the lower the yield, price and contents of reducing sugar and nicotine became, but reverse in this trends with total nitrogen and protein nitrogen. So 6 or 8 days interval of harvest is most recommendable.

  • PDF

Manufacture of non-sintered cement solidifier using clay, waste soil and blast furnace slag as solidifying agents: Mineralogical investigation (점토, 폐토양 및 고로슬래그를 고화재로 이용한 비소성 시멘트 고화체 제조: 광물학적 고찰)

  • Jeon, Ji-Hun;Lee, Jong-Hwan;Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.1
    • /
    • pp.25-39
    • /
    • 2022
  • This study was conducted to evaluate the manufacturing process of non-sintered cement for the safe containment of radioactive waste using low level or ultra-low level radioactive waste soil generated from nuclear-decommissioning facilities, clay minerals, and blast furnace slag (BFS) as an industrial by-product recycling and to characterize the products using mineralogical and morphological analyses. A stepwise approach was used: (1) measuring properties of source materials (reactants), such as waste soil, clay minerals, and BFS, (2) manufacturing the non-sintered cement for the containment of radioactive waste using source materials and deducing the optimal mixing ratio of solidifying and adjusting agents, and (3) conducting mineralogical and morphological analyses of products from the hydration reactions of manufactured non-sintered cement solidifier (NSCS) containing waste concrete generated from nuclear-decommissioning facilities. The analytical results of NSCS using waste soil and clay minerals confirmed none of the hydration products, but calcium silicate (CSH) and ettringite were examined as hydration products in the case of using BFS. The compressive strength of NSCS manufactured with the optimum mixing ratio and using waste soil and clay minerals was 3 MPa after the 28-day curing period, and it was not satisfied with the acceptance criteria (3.44 MPa) for being brought in disposal sites. However, the compressive strength of NSCS using BFS was estimated to be satisfied with the acceptance criteria, despite manufacturing conditions, and it was maximized to 27 MPa at the optimal mixing ratio. The results indicate that the most relevant NSCS for the safe containment of radioactive waste can be manufactured using BFS as solidifying agent and using waste soil and clay minerals as adsorbents for radioactive nuclides.

Effect of storage condition of resin cement on shear bond strength of the orthodontic bracket (레진시멘트의 보관 조건이 치열교정용 브라켓의 전단접착강도에 미치는 영향)

  • Seul-Gi, Yi;Jin-Woo, Kim;Se-Hee, Park;Yoon, Lee;Eung-Hyun, Kim;Kyung-Mo, Cho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.4
    • /
    • pp.189-195
    • /
    • 2022
  • Purpose: For orthodontic bracket bonding, light curing resin cement is widely used because the process is convenient, and it can be polymerized at the desired time. This study compared the difference of bonding strength of orthodontic resin cement according to storage condition. Materials and Methods: After acid etching the bovine enamel surface with 37% phosphoric acid, 15 orthodontic brackets for mandible incisors were bonded with Ortho Connect and Orthomite LC according to following three conditions; 1) Immediate after 4℃ refrigeration for 3 months (IR), 2) One day room temperature after 4℃ refrigeration for 3 months (OR), 3) Room temperature for 3 months (RT). The shear bond strength was measured with a universal material tester and failure pattern of the specimen was observed. Two-way ANOVA and One-way ANOVA were used at the 95% significance level. Results: Ortho Connect that was applied immediately after refrigeration showed the maximum shear bond strength. Orthomite that was applied immediately after refrigeration showed the lowest shear bond strength, and the group stored at room temperature for three months showed the highest shear bond strength, and the difference between the two groups was significant. Conclusion: Ortho Connect can be used without worrying about bond strength even if it is used immediately after refrigeration, but Orthomite should be kept at room temperature sufficiently after refrigeration.