• Title/Summary/Keyword: Curing Reaction

Search Result 437, Processing Time 0.024 seconds

The Compressive Strength Development of Briquette Ash by Alkali Activated Reaction (알칼리 활성반응에 의한 Briquette ash의 강도 발현 특성)

  • Seo, Myeong-Deok;Lee, Su-Jeong;Park, Hyun-Hye;Kim, Yun-Jong;Lee, Su-Ok;Kim, Taik-Nam;Cho, Sung-Baek
    • Korean Journal of Materials Research
    • /
    • v.18 no.9
    • /
    • pp.463-469
    • /
    • 2008
  • Non-sintering cement was manufactured with briquette ash. Alkali activator for compression bodies used a NaOH solution. In order to apply alkali-activated briquette ash and the non-sintering cement to concrete, several experimental studies were performed. It was necessary to study the binder obtained by means of a substitute for the cement. This study concentrated on strength development according to the concentration of NaOH solution, the curing temperature, and the curing time. The highest compressive strength of compression bodies appeared as $353kgf/cm^2$ cured at $80^{\circ}C$ for 28 days. This result indicates that a higher curing temperature is needed to get a higher strength body. Also, geopolymerization was examined by SEM and XRD analysis after the curing of compression bodies. According to SEM and XRD, the main reaction product in the alkali activated briquette ash is aluminosilicate crystal.

Curing Reaction and Physical Properties of Acrylic High-Solid Coatings (아크릴계 하이솔리드 도료의 경화반응과 도막물성)

  • Park, Hyong-Jin;Kim, Sung-Rae;Jung, Choong-Ho;An, Chong-Il;Park, Hong-Soo;Kim, Tae-Ok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.261-272
    • /
    • 2001
  • An ACR/HMMM film was prepared by blending high-solid ACR with curing agent, hexamethoxymethyl melamine (HMMM). An active curing reaction was observed at $170^{\circ}C$. The dynamic viscoelastic $T_{g}$ of the final film increased with the static viscoelastic $T_{g}$ of the film. The log damp value, which means a viscoelastic ratio, decreased with the increase in the curing temperature of the film. Physical properties of the films were within a suitable range for films, and by an accelerated weathering resistance test the films were proved weather resistible ones.

The property of inorganic insulation material depending on CSA contents and atmospheric steam curing condition

  • Kim, Tae-Yeon;Chu, Yong-Sik;Seo, Sung-Kwan;Yoon, Seog-Young
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.407-412
    • /
    • 2018
  • In this study, we have made a cement based inorganic insulation material and added CSA (Hauyne Clinker) to reduce the demolding time and enhance the handling workability. CSA contents were varied by 0%, 1%, 3%, 5% and the atmospheric steam curing was tried for enhancing the compressive strength. As the CSA contents are increased to 5%, a rapid reaction of hydration caused the sinking of the slurry. So, the setting-retarder was added to control the reaction of hydration. By this, the sinking of the slurry was controlled but the height of the green body after expansions was a little bit lowered. In the CSA-added slurry, it was possible to demold within 24 hours and in case of CSA 5%-added, the sufficient workability was secured. Atmospheric steam curing (temperatures $-40{\sim}80^{\circ}C$, for 6~10 hrs.) was attempted to improve the compressive strength and found that an excellent strength of 0.25 MPa was achieved at $80^{\circ}C$ for 8 hrs. Specific gravity was about $0.12{\sim}0.13g/cm^3$ and heat conductivity was about 0.045 W/mK in all specimens. This strategy significantly improves the compressive strength of CSA 5%-added specimen up to 25% compared to without CSA added specimen.

Inflammatory Effect of Light-Emitting Diodes Curing Light Irradiation on Raw264.7 Macrophage

  • Jeong, Moon-Jin;Kil, Ki-Sung;Lee, Myoung-Hwa;Lee, Seung-Yeon;Lee, Hye-Jin;Lim, Do-Seon;Jeong, Soon-Jeong
    • Journal of dental hygiene science
    • /
    • v.19 no.2
    • /
    • pp.133-140
    • /
    • 2019
  • Background: The light-emitting diode (LED) curing light used is presumed to be safe. However, the scientific basis for this is unclear, and the safety of LED curing light is still controversial. The purpose of this study was to investigate the effect of LED curing light irradiation according to the conditions applied for the polymerization of composite resins in dental clinic on the cell viability and inflammatory response in Raw264.7 macrophages and to confirm the stability of LED curing light. Methods: Cell viability and cell morphology of Raw264.7 macrophages treated with 100 ng/ml of lipopolysaccharide (LPS) or/and LED curing light with a wavelength of 440~490 nm for 20 seconds were confirmed by methylthiazolydiphenyl-tetrazolium bromide assay and microscopic observation. The production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) was confirmed by NO assay and $PGE_2$ enzyme-linked immunosorbent assay kit. Expression of interleukin $(IL)-1{\beta}$ and tumor necrosis factor $(TNF)-{\alpha}$ in total RNA and protein was confirmed by reverse transcription polymerase chain reaction and Western blot analysis. Results: The LED curing light did not affect the viability and morphology of normal Raw264.7 cells but affected the cell viability and induced cytotoxicity in the inflammation-induced Raw264.7 cells by LPS. The irradiation of the LED curing light did not progress to the inflammatory state in the inflammation-induced Raw264.7 macrophage. However, LED curing light irradiation in normal Raw264.7 cells induced an increase in NO and $PGE_2$ production and mRNA and protein expression of $(IL)-1{\beta}$ and $(TNF)-{\alpha}$, indicating that it is possible to induce the inflammatory state. Conclusion: The irradiation of LED curing light in RAW264.7 macrophage may induce an excessive inflammatory reaction and damage oral tissues. Therefore, it is necessary to limit the long-term irradiation which is inappropriate when applying LED curing light in a dental clinic.

Cure Kinetics of amine-cured tetraglycidyl-4,4'-diaminodiphenylmethane epoxy blends with a new polyetherimide (반응성 열가소성 수지로 개질된 TGDDM/DDS 시스템의 Cure Kinetics)

  • Hwang Seungchul;Lee JungHoon;Kim Donghyon;Kim Woho;Kim Minyoung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.214-217
    • /
    • 2004
  • The cure kinetics of blends of epoxy(tetraglycidyl-4,4'-diaminodiphenylmethane ; TGDDM)/curing agent(diaminodiphenyl sulfone ; DDS) resin with amine terminated polyetherimide-CTBN-amine terminated polyetherimide triblock copolymer(ABA) were studied using differential scanning calorimetry under isothermal conditions to determine the reaction parameters such as activation energy and reaction constants. By increasing the amount of ABA in the blends, the final cure conversion was decreased. Lower values of the final cure conversions in the epoxy/ABA blends indicated that ABA hinders the cure reaction between the epoxy and curing agents. 1be value of the reaction order, m, for the initial autocatlytic reaction was not affected by blending ABA with epoxy resin, and the value was approximately 1.0. The value of n for the nth order component in the autocatalytic analysis was increased by increasing the amount of ABA in the blends, and the value increased from 2.0-3.4. A diffusion controlled reaction was observed as the cure conversion increased and the rate equation was successfully analyzed by incorporating the diffusion control term for the epoxy/DDS/ABA blends.

  • PDF

Novel Preparation of Epoxy/Silica Nanocomposite Using Si-N Precursor (Si-N 전구체를 이용한 에폭시/실리카 나노복합재료의 제조)

  • Kim Lee Ju;Yoon Ho Gyu;Lee Sang-Soo;Kim Junkyung
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.391-396
    • /
    • 2004
  • In order to overcome drawbacks in the conventional preparation of epoxy/silica nanocomposites, such as formation of micro voids and dimensional instability caused by evolution of volatile by-products during curing reaction, a novel preparation method using Si-N precursor has been proposed. When prepared through in-situ reaction of epoxy curing reaction with sol-gel reaction of Si-N precursor, methyltripiperidinylsilane (MTPS) which does not produce by-products during reaction, epoxy/silica nanocomposites of extremely even dispersion of inorganic phase could be successfully prepared, resulting in high enhancement of mechanical and thermal properties as well as outstanding transparency.

A Study on Curing Level Prediction Model for Varying Chemical Composition of Epoxy Asphalt Mixture (에폭시 아스팔트 혼합물의 에폭시 화학 조성에 따른 양생수준 예측)

  • Jo, Shin Haeng;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.465-470
    • /
    • 2015
  • The curing of epoxy asphalt mixture depends on the chemical reaction of epoxy resin and the curing agent. The curing level of epoxy asphalt mixture needs to be predicted in order to decide traffic opening time and to establish further construction plans. In this study, chemical analysis of the prediction model was executed to expand the applicability of the previous prediction model. Consequently, the curing level prediction model of epoxy asphalt concrete mixture was proposed using the concentration ratio and the acid value ratio. According to the results of outdoor curing experiments, the final prediction model showed that the correlation coefficient is greater than 0.971. Precise prediction results of different composition epoxy asphalt were obtained by reflecting the chemical composition ratios in the curing level prediction model.

Physical Properties of UV curable coating on plastic (플라스틱용 자외선경화형 도료의 물성연구)

  • 김일재;문명준
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.16 no.3
    • /
    • pp.61-80
    • /
    • 1998
  • To investigate in influence of photosensitizer used with benzophenone(BP) in the curing rate and physical properties of UV curable hard coating on plastic, we prepared UV curable clear and pigmented coatings with DEA, DMA, NPM and TEA as photosensitizer, respectively. The curing rate calculated from the decrease of the absorbance of acrylic double bond measured by FT-IR spectroscopy increased s follows; DEA>DMA>NPM>TEA. this order could be explained by the reactivity of diethylamino group of DEA and the ease of formation of activated complex between BP and photosensitizer during the curing process. In UV curable pigmented coatings, the order of curing rate increased as follows; DEA>DMA>TEA>NPM. It was found that the curing rate of the pigmented coating can be increased by light scattering of TiO$_2$. The hardness of coating film cured by photosensitization of DEA and DMA is higher than other photosensitizers due to the crosslinking reaction of DEA and DMA radical bound to polymer backbone.

  • PDF

Effect of Zirconia Particle Addition on Curing Behavior of Phenolic Resins (Zirconia 입자의 첨가가 페놀 수지의 경화거동에 미치는 영향)

  • Yun, Jaeho;Kim, Hanjun;Lee, Jae Min;Kim, Jong Hee;Lee, Seung Goo
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.288-297
    • /
    • 2022
  • This study investigated the effect of addition of zirconia(zirconium oxide) powder on the curing behavior of phenolic resins. The heating rate controlled curing and isothermal curing behaviors of the phenol resin according to the content of the zirconia powder were analyzed. The viscosity and thermal decomposition characteristics of the phenolic resin with the zirconia content were also examind. From the DSC analysis, the degree of cure and the rate of cure were obtained. Finally, the activation energy for the cure reaction were calculated from the DSC data of the zirconia added phenolic resin. As a found, the higher the zirconia content, the longer the curing was delayed and the greater the activation energy required for curing. Additionally, the TGA result that as the content of zirconia increased, less weight loss was observed. The surface tackiness of the Carbon/Phenol prepreg was partially changed according to the zirconia content, but had no significant effect.

Curing of Epoxy Resin with Natural Cashew Nut Shell Liquids (천연 캐슈너트 외피유를 이용한 에폭시 수지의 가교)

  • Nah, Chang-Woon;Go, Jin-Hwan;Byun, Joon-Hyung;Hwang, Byung-Sun
    • Composites Research
    • /
    • v.21 no.1
    • /
    • pp.16-21
    • /
    • 2008
  • The cure behavior of epoxy resin with a conventional amide-type hardener(HD) was investigated in the presence of castor oil(CO), cashew nut shell liquid(CNSL) and CNSL-formaldehyde resin(CFR) by using a dynamic differential scanning calorimetry(DSC). The activation energy of curing reaction was also calculated based on the non-isothermal DSC thermograms at various heating rates. An one-stage curing was noted in the case of epoxy resin filled with CO, while the epoxy resin with CNSL and CFR showed a two-stage curing process. A competitive cure reaction was noted for the epoxy resin/CNSL(or CFR)/HD blends. In the absence of HD, the CFR showed lower values of curing enthalpy than that of CNSL. The activation energy of epoxy resin curing increased with increasing the CNSL and CFR loading.