• Title/Summary/Keyword: Curing Characteristics

Search Result 796, Processing Time 0.03 seconds

Toughness Improvement of Unsaturated Polyester Mortars Blended with Polyurethane Liquid Rubber (폴리우레탄 액상고무를 혼합한 불포화 폴리에스테르 모르타르의 인성 증진효과)

  • 최영준;박준철;박정민;김화중
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.283-290
    • /
    • 2002
  • Generally polymer mortar and concrete using unsaturated polyester resin has high strengths and good chemical resistance. However it also has high brittleness and because of this reason, it is not used for the purpose that demands high resistance to impact. The purpose of this study is to improve the brittleness of unsaturated polyester mortar(UPE mortar) which could be used for the flooring material with recycled aggregates and UPE. Polyurethane liquid rubber(PU) and recycled aggregates were used to complement the brittleness and to recycle the resources respectively. The characteristics of mortar were investigated according to the molecular weight and substitution rate of PU. As the molecular weight and PU substitution rate were increased, the viscosity was increased, working life became fast and curing shrinkage was reduced. Compressive and flexural strengths were also reduced but tile brittleness was improved. Therefore, it is seemed that the improved WE mortar could be obtained by using polyurethane liquid rubber with the polyol of molecular weight 2000, 3000.

Study on Hydration Properties of High Strength Mass Concrete to apply Precast Concrete (PC 적용을 위한 고강도 매스콘크리트의 수화특성에 관한 연구)

  • Park, Heung-Lee;Kim, Sung-Jin;Lee, Hoi-Keun;Lee, Seung-Hoon;Park, Byung-Keun;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.661-664
    • /
    • 2008
  • As architectures have recently become high-risers and megastructured, stable high strength products have been ensured. Accordingly, use of precast concrete accouplement has been increased in order to facilitate air compression and rationalize construction. Since not only external heating but also internal temperature rise caused by the accumulation of cement hydration heat in manufacturing process, precast concrete members with large cross-section used for high-rise mega-structure's columns and beams may exhibit different temperature history compared to the precast concrete members for wall and sub-floor with relatively small cross-sections. Therefore, this study aims to elucidate the characteristics of temperature history of mass concrete members cast with high-strength concrete for precast concrete application. In this study, large cross-sectional precast concrete mock-up, unit cement quantity, and temperature histories in manufacturing precast concrete member under different curing condition were inclusively investigated.

  • PDF

Characteristics of Hydration and Correlation on Cement-Based Thermal Insulation Material

  • Kim, Tae Yeon;Jo, Ki Sic;Chu, Yong Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.489-496
    • /
    • 2019
  • Cement-based thermal insulation material was manufactured using OPC, lime, anhydrite, and CSA cement in this study. The morphology and physical properties of the material were analyzed using XRD. All samples had ettringite, Ca(OH)2, and CaCO3 crystals. The XRD peak intensity of the ettringite and Ca(OH)2 slightly increased with an increase in curing time from 3 to 7 days. The compressive strength values at 28 days of specimens 1-8 were in the range of 0.25-0.32 MPa, and the compressive strength values of specimens 3-8 were > 0.3 MPa. The coefficients of correlation between compressive strength and apparent gravity at 7 days and those between compressive strength and ettringite/Ca(OH)2 XRD peak intensity at 28 days were above 0.8. That is, the compressive strength exhibited an influence on apparent gravity at 7 days and on hydrate at 28 days. The thermal conductivity of all specimens was 0.041-0.045 W/mK, and the highest value of thermal conductivity was shown by specimen 5. The coefficient of correlation between apparent gravity and thermal conductivity was 0.84. It was concluded that control of raw materials and hydrates must be considered for manufacturing of insulation materials. The cement-based thermal insulation material in this study could be used in construction fields.

A Study on the Application of Mongolia Fly Ash as Cement Additive (몽골 플라이애시의 시멘트 혼화재로의 적용에 관한 연구)

  • Seo, Sung Kwan;Kim, Yoo;Cho, Hyung Kyu;Chu, Yong Sik
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.50-57
    • /
    • 2017
  • In this study, characteristics of Mongolian fly ash and the possibility of its use as a cement additive through grinding process were examined. Mongolian fly ash was larger than domestic fly ash and less spherical. The CaO content of Mongolian fly ash was higher than domestic fly ash and the other components were similar. After vibratory milling, the mean particle size of fly ash decreased to $7.9{\mu}m$ and the blaine increased. When milled fly ash was mixed with cement, it showed the best compressive strength value at 60 min. These strength values were higher than OPC at all curing times.

Application of Precast Concrete Products of Non-Sintered Cement Mortar based on Industrial by-Products (산업부산물을 이용한 비소성 시멘트 모르타르의 프리캐스트콘크리트 제품 적용성 평가)

  • Na, Hyeong-Won;Moon, Kyoung-Ju;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.1
    • /
    • pp.19-26
    • /
    • 2020
  • This study aimed to develop non-sintered cement that could replace portland cement which emits large amount of carbon dioxide during firing process. For this purpose, ground granulated blast furnace slag, type c fly ash and slaked lime were used. In addition, through the experimental results, the characteristics of the non-sintered cement binders according to the mixing ratios will be identified, and the utilization plans for the precast concrete products will be presented. In this experiment, non-sintered cement binders using industrial by-products were prepared to compare the flexural strength and compressive strength of each of the 3, 7 and 28 days. As a result, the results satisfy the KS of the target product proposed in this study. Therefore, this study presents the possibility of using precast concrete products by developing non-sintered cement binders using industrial by-products.

Properties Evaluation of Controlled Low Strength Materials Used Industrial by-Products of A Great Quantity (다량의 산업부산물을 활용한 슬러리계 되메움 재료의 물성 평가)

  • Liao, Xiaokai;Kim, Dong-Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.5
    • /
    • pp.441-448
    • /
    • 2020
  • In this study, the engineering characteristics of CLSM mixed with GBFS and GF were identified to review the applicability as a replacement material and further evaluate the recharge and field applicability as a joint filler material. This study has resulted in the following findings. First, Using more than 30% of GBFS to replace FA enabled bleeding control through improved fluidity. Moreover, it has been confirmed that effective strength and proper quality can be achieved when it was applied as a refiller and joint filler material with higher early strength than the base material. Second, When using more than 30% of FNS to replace sand, it was found that adding 0.3~0.35 of the AE agent is effective for bleeding control through improved fluidity. Third, When using more than 30% of both GBFS and FNS in combination, it was found that adding 0.3~0.35 of the AE agent is effective for bleeding control through improved fluidity. Also, it was confirmed that proper mixing of 15~60% of GF secured the effective strength and desired quality as a refiller and joint filler material. Fourth, The relationship between the superficial level and internal micro pores of CLSM from the curing process needs to be discussed and reviewed in more detail through further research studies.

Electro-mechanical impedance based strength monitoring technique for hydrating blended cements

  • Thirumalaiselvi, A.;Sasmal, Saptarshi
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.751-764
    • /
    • 2020
  • Real-time monitoring of stiffness and strength in cement based system has received significant attention in past few decades owing to the development of advanced techniques. Also, use of environment friendly supplementary cementitious materials (SCM) in cement, though gaining huge interest, severely affect the strength gain especially in early ages. Continuous monitoring of strength- and stiffness- gain using an efficient technique will systematically facilitate to choose the suitable time of removal of formwork for structures made with SCM incorporated concrete. This paper presents a technique for monitoring the strength and stiffness evolution in hydrating fly ash blended cement systems using electro-mechanical impedance (EMI) based technique. It is important to observe that the slower pozzolanic reactivity of fly ash blended cement systems could be effectively tracked using the evolution of equivalent local stiffness of the hydrating medium. Strength prediction models are proposed for estimating the strength and stiffness of the fly ash cement system, where curing age (in terms of hours/days) and the percentage replacement of cement by fly ash are the parameters. Evaluation of strength as obtained from EMI characteristics is validated with the results from destructive compression test and also compared with the same obtained from commonly used ultrasonic wave velocity (UPV). Statistical error indices indicate that the EMI technique is capable of predicting the strength of fly ash blended cement system more accurate than that from UPV. Further, the correlations between stiffness- and strength- gain over the time of hydration are also established. From the study, it is found that EMI based method can be effectively used for monitoring of strength gain in the fly ash incorporated cement system during hardening.

The experimental research on periodic airflow in human nasal cavity (비강내 주기유동장의 실험적 해석에 관한 연구)

  • Kim, Sung-Kyun;Son, Yeong-Rak;Sin, Seok-Jae
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1687-1692
    • /
    • 2004
  • Airflow in the nasal cavity of a normal Korean adult is investigated experimentally by tomographic PIV measurement. Knowledge of airflow characteristics in nasal cavities is essential to understand the physiology and pathology aspects of nasal breathing. Several studies have utilized physical models of the healthy nasal cavity to investigate the relationship between nasal anatomy and airflow. All of these researches on nasal airflow are under the condition of constant flow-rate. In this study, nasal cavity flow with the physiological period is investigated by tomographic PIV, for the first time. A pumping system that can produce the periodic flow is created. Thanks to a new method for the model casting by a combination of the rapid prototyping and curing of clear silicone, a transparent rectangular box containing the complex nasal cavity can be made for PIV. The CBC PIV algorithm is used for analysis. Phase-averaged mean and RMS velocity distributions are obtained for inspirational and expiration nasal airflows. The comparison with the constant flow case is appreciated. There exist many flow patterns depending on each phase.

  • PDF

Effects of Reinforcing Fillers on Far-infrared Vulcanization Characteristics of EPDM (보강제에 따른 EPDM의 원적외선 가교 특성 연구)

  • Kim, J.S.;Lee, J.H.;Jung, W.S.;Bae, J.W.;Park, H.C.;Kang, D.P.
    • Elastomers and Composites
    • /
    • v.44 no.1
    • /
    • pp.47-54
    • /
    • 2009
  • EPDM(Ethylene-propylene-diene-terpolymer) compound reinforced with carbon black having four different particle size, acetylene black(thermal conductivity carbon black), and silica were manufactured by internal mix and open mill. To investigate the effect of particle size of filler and filler type on far-infrared vulcanization, intermal temperature of compound, degree of curing, infrared spectroscopy, and thermal analysis were measured. The thermal conductivity of far-infrared vulcanized EPDM compound increased with increasing particle size of carbon filler, but hot air vulcanized EPDM compound is not affected by particle size. The thermal conductivity was increased in the order of carbon black < silica < acetylene black(thermal conductivity carbon black).

Performance Analysis of Low-level Radiation Shielding Sheet with Diamagnetic Nanoparticles

  • Cho, Jae-Hwan;Kim, Myung-Sam
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.103-109
    • /
    • 2015
  • In this study, the authors attempted to produce a medical radiation shielding fiber that can be produced at a nanosize scale and that is, unlike lead, harmless to the human body. The performance of the proposed medical radiation shielding fiber was then evaluated. First, diamagnetic bismuth oxide, an element which, among elements that have a high atomic number and density, is harmless to the human body, was selected as the shielding material. Next, 10-100 nm sized nanoparticles in powder form were prepared by ball milling the bismuth oxide ($Bi_2O_3$), the average particle size of which is $1-500{\mu}m$, for approximately 10 minutes. The manufactured bismuth oxide was formed into a colloidal solution, and the radiation shielding fabric was fabricated by curing after coating the solution on one side or both sides of the fabric. The thicknesses of the shielding sheets prepared with bismuth oxide were 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 1.0 mm. An experimental method was used to measure the absorbed dose and irradiation dose by using the lead equivalent test method of X-ray protection goods presented by Korean Industrial Standards; the resultant shielding rate was then calculated. From the results of this study, the X-ray shielding effect of the shielding sheet with 0.1 mm thickness was about 55.37% against 50 keV X-ray, and the X-ray shielding effect in the case of 1.0 mm thickness showed shielding characteristics of about 99.36% against 50 keV X-ray. In conclusion, it is considered that nanosized-bismuth radiation shielding fiber developed in this research will contribute to reducing the effects of primary X-ray and secondary X-ray such as when using a scattering beam at a low level exposure.