• 제목/요약/키워드: Curie temperature($T_c$)

검색결과 117건 처리시간 0.027초

Spinel 유화물 $Ni_xFe_{1-x}Cr_2S_4(X = 0.05, 0.1, 0.2)$의 초거대자기저항(CMR)현상에 관한 연구 (Colossal Magnetoresistance in Chalcogenide Spinels $Ni_xFe_{1-x}Cr_2S_4(X = 0.05, 0.1, 0.2)$)

  • 박재윤
    • 한국자기학회지
    • /
    • 제11권4호
    • /
    • pp.151-156
    • /
    • 2001
  • 최근 망간산화물 Ln$_{1-x}$A$_{x}$MnO$_3$(Ln=La, Pr, Nd등의 lanthannide; A=Ca, Sr, Ba, Pb 등의 +2가 이온)는 초거대자기저항(CMR) 특성으로 많은 연구그룹의 주목을 받고 있다. 그런데 chalcogenide spinels에서도 CMR특성이 관측되는 것으로 보고되고 있다. 본 논문에서는 chalcogenide Ni$_{x}$Fe$_{1-x}$Cr$_2$S$_4$에서 Ni이온이 CMR 특성에 미치는 효과를 X선 회절 실험, 자기저항측정, 그리고 Mossbauer 분광실험으로 조사하였다. 그 결과 Ni이온의 치환은 Jahn-Teller distortion을 심화시키고, 또한 T$_{c}$ 값에 증가를 초래하여 CMR현상에 영향을 준다. T$_{c}$ 부근에서 일어나는 CMR현상은 망간산화물에서의 $Mn^{3+}$$Mn^{4+}$ 사이의 이중교환상호작용과는 다르게 동적 Jahn-Teller효과에 기인한 도체-반도체전이와 자기장하에서 절반 금속성의 에너지밴드구조를 갖는 시료의 스핀편향에 의한 전도현상 그리고 자기구역의 정렬에 의하여 발생되는 것으로 나타났다.

  • PDF

Effect of Partial Substitution of Magnetic Rare Earths for La on the Structure, Electric Transport And Magnetic Properties of Oxygen Deficient Phase LaSr2MnCrO7-δ

  • Singh, Devinder;Sharma, Sushma;Mahajan, Arun;Singh, Suram;Singh, Rajinder
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1679-1683
    • /
    • 2013
  • Intergrowth perovskite type complex oxides $La_{0.8}Ln_{0.2}Sr_2MnCrO_{7-{\delta}}$ (Ln=La, Nd, Gd, and Dy) have been synthesized by sol-gel method. Rietveld profile analysis shows that the phases crystallize with tetragonal unit cell in the space group I4/mmm. The unit cell parameters a and c decrease with decreasing effective ionic radius of the lanthanide ion. The magnetic studies suggest that the ferromagnetic interactions are dominant due to $Mn^{3+}$-O-$Mn^{4+}$ and $Mn^{3+}$-O-$Cr^{3+}$ double exchange interactions. Both Weiss constant (${\theta}$) and Curie temperature ($T_C$) increase with decreasing ionic radius of lanthanide ion. It was found that the transport mechanism is dominated by Mott's variable range hopping (VRH) model with an increase of Mott localization energy.

Nanocomposite Magnetic Materials

  • Ludwig Schultz;Alberto Bollero;Axel Handstein;Dietrich Hinz;Karl-Hartmut Muller;Golden Kumar;Juergen Eckert;Oliver Gutfleisch;Anke Kirehner Aru Yan
    • 한국분말재료학회지
    • /
    • 제9권6호
    • /
    • pp.381-393
    • /
    • 2002
  • Recent developments in nanocrystalline and nanocomposite rare earth-transition metal magnets are reviewed and emphasis is placed on research work at IFW Dresden. Principal synthesis methods include high energy ball milling, melt spinning, mold casting and hydrogen assisted methods such as reactive milling and hydrogenation-disproportionation-desorption-recombination. These techniques are applied to NdFeB-, PrFeB- and SmCo-type systems with the aim to produce high remanence magnets with high coercivity. Concepts of maximizing the energy density in nanostructured magnets by either inducing a texture via anisotropic HDDR or hot deformation or enhancing the remanence via magnetic exchange coupling are evaluated. With respect to high temperature applications melt spun $Sm(Co_{0.74}Fe_{0.1}Cu_{0.12}Zr_{0.04})_{7.5}$ ribbons were prepared, which showed coercivities of up to 0.53 T at 50$0^{\circ}C$. Partially amorphous $Nd_{60}Fe_xCo_{30-x}Al_{10}(0{\leq}x{\leq}30)$ alloys were prepared by copper mold casting. The effect of transition metal content on the glass-forming ability and the magnetic properties was investigated. The $Nd_{60}Co_{30}Al_{10}$ alloy exhibits an amorphous structure shown by the corresponding diffraction pattern. A small substitution of Co by 2.5 at.% Fe results In the formation of Fe-rich crystallites embedded in the Nd-rich amorphous matrix. The Fe-rich crystallites show hard magnetic behaviour at room temperature with a coercivity value of about 0.4 T, relatively low saturation magnetization and a Curie temperature of 500 K.

$Sm_{2}Fe_{17}N_{x}$의 질화과정 및 자기특성 (Nitrogenation Process and Magnetic Properties of $Sm_{2}Fe_{17}$-Nitride)

  • 김동환;권혁무;김택기;김희태;김윤배
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.858-863
    • /
    • 1995
  • $Th_{2}Zn_{17}$ 구조를 갖는 $Sm_{2}Fe_{17}$ 화합물을 이용하여 $250^{\circ}C$에서 $500^{\circ}C$까지 16시간 질화처리를 함으로써 $Sm_{2}Fe_{17}N_{x}$의 질화과정 및 질소함량에 따른 자기특성을 조사하였다. 질화초기에는 모든 온도구간에서 질소함량(${\Delta}W$)이 시간($\sqrt{t}$)에 대하여 직선적으로 증가하고, 이 관계를 이용하여 구한 질화과정의 활성화에너지, Q=102.4 kJ/mol이다. $Sm_{2}Fe_{17}N_{x}$의 자기특성은 질소함량에 크게 의존하며 $Sm_{2}Fe_{17}N_{2.8}$이 최적의 자기특성을 나타내었다. 이 질화물의 포화자화, 이방성상수, 이방성자장 및 큐리온도는 각각 $M_{s}=1147\;emu/cm^{3},\;K_{1}=4.6{\times}10^{7}erg/cm^{3},\;K_{2}=6.0{\times}10^{7}erg/cm^{3},\;H_{A}=290\;kOe\;및\;450^{\circ}C$이다.

  • PDF

Magnetocaloric Properties of AlFe2B2 Including Paramagnetic Impurities of Al13Fe4

  • Lee, J.W.;Song, M.S.;Cho, K.K.;Cho, B.K.;Nam, Chunghee
    • Journal of the Korean Physical Society
    • /
    • 제73권10호
    • /
    • pp.1555-1560
    • /
    • 2018
  • $AlFe_2B_2$ produced by using a conventional arc melter has a ferromagnetic material with a Curie temperature ($T_C$) of around 300 K, but the arc-melt generates paramagnetic $Al_{13}Fe_4$ impurities during the synthesis of $AlFe_2B_2$. Impurities are brought to cause a decrease in magnetocaloric effects (MCEs). To investigate the effects of $Al_{13}Fe_4$ impurities on MCEs, we prepared and compared ascast and acid-treated samples, where the acid treatment was performed to remove the $Al_{13}Fe_4$ impurities. For the structural analysis, powder X-ray diffraction was carried out, and the measured data were subjected to a Rietveld refinement. The presence of $Al_{13}Fe_4$ impurities in the as-cast sample was observed in the phase analysis measurements. Magnetic properties were investigated by using Superconducting Quantum Interference Device (SQUID) measurements for the as-cast and the acid-treated $AlFe_2B_2$ samples. From isothermal magnetization measurements, Arrott plots were obtained showing that the transition of $AlFe_2B_2$ has a second-order magnetic phase transition (SOMT). The $T_C$ and the saturation magnetization increased for the acid-treated sample due to removal of the paramagnetic impurities. As a consequence, the magnetic entropy change ($-{\Delta}S$) increased in the pure $AlFe_2B_2$ samples, but the full width at half maximum in the plot of $-{\Delta}S$ vs. T decreased due to the absence of impurities.

비납계 0.98 (Na0.44K0.52)Nb0.84O3-0.02Li0.04 (Sb0.06Ta0.1)O3-0.5 mol%CuO 세라믹스의 전기적, 구조적 특성 (Electrical and Structural Properties of Lead Free 0.98 (Na0.44K0.52)Nb0.84O3-0.02Li0.04 (Sb0.06Ta0.1)O3-0.5 mol%CuO Ceramics)

  • 이승환;남성필;이성갑;이영희
    • 한국전기전자재료학회논문지
    • /
    • 제24권2호
    • /
    • pp.116-120
    • /
    • 2011
  • The 0.98 ($Na_{0.44}K_{0.52})Nb_{0.84}O_3-0.02Li_{0.04}$ ($Sb_{0.06}Ta_{0.1})O_3-0.5$ mol%CuO ceramics have been fabircated by ordinary sintering technique and the effect of various calcination method on the electrical propertis and microstructure have been studied. It was observed that the various calcination method influenced the elelctrical properties and structural properties of the 0.98NKN-0.02LST-0.5 mol%CuO ceramics with the optimum piezoelectric constant ($d_{33}$) and electromechanical coupling factor ($k_p$) at room temperature of about $155{\rho}C/N$ and 0.349, respectively, from 0.98NKN-0.02LST-0.5 mol%CuO ceramics sample. The curie temperature ($T_c$) of this ceramic was found at $440^{\circ}C$. The 0.98NKN-0.02LST-0.5 mol%CuO ceramics are a promising lead-free piezoelectric ceramics.

Enhanced Low-field Magnetoresistance of La0.7Sr0.3Mn1+dO3-Mn3O4 Composite Films Prepared by ex-situ Solid Phase Crystallization

  • Kang, Young-Min;Kim, Hyo-Jin;Yoo, Sang-Im
    • Journal of Magnetics
    • /
    • 제17권4호
    • /
    • pp.265-270
    • /
    • 2012
  • We report improved low-field magnetoresistance (LFMR) effects of the $La_{0.7}Sr_{0.3}Mn_{1+d}O_3-Mn_3O_4$ composite films with the nominal composition of $La_{0.7}Sr_{0.3}MnO_3$(LSMO)-50 mol% $Mn_3O_4$. The composite films were fabricated by ex-situ solid phase crystallization (SPC) of amorphous films at the annealing temperature region of $900-1100^{\circ}C$ for 2 h in a pure oxygen atmosphere. The amorphous films were deposited on polycrystalline $BaZrO_3$ (poly-BZO) substrates by dc-magnetron sputtering at room temperature. The Curie temperatures ($T_C$) of all composite films were insignificantly altered in the range of 368-372 K. The highest LFMR value of 1.29 % in 0.5 kOe with the maximum dMR/dH value of $37.4%kOe^{-1}$ at 300 K was obtained from 900 nm-thick composite film annealed at $1100^{\circ}C$. The improved LFMR properties of the composite films are attributed to effective spin-dependent scattering at the $La_{0.7}Sr_{0.3}Mn_{1+d}O_3$ grain boundaries sharpened by adjacent chemically compatible $Mn_3O_4$ grains.

0.96K0.5Na0.5NbO3-0.04SrTiO3 세라믹스의 상전이와 압전 특성에 대한 Li2CO3 도핑 효과 (Effect of Li2CO3 Doping on Phase Transition and Piezoelectric Properties of 0.96K0.5Na0.5NbO3-0.04SrTiO3 Ceramics)

  • 박재영;즈엉 짱 안;이상섭;안창원;김병우;한형수;이재신
    • 한국전기전자재료학회논문지
    • /
    • 제36권5호
    • /
    • pp.513-519
    • /
    • 2023
  • It was reported that a tetragonal phase can be stabilized with maintaining good piezoelectric properties when Na0.5K0.5NbO3 (KNN) is modified with 0.06 mol SrTiO3. However, such a high amount of SrTiO3 leads not only to poor sinterability but low Curie temperature (TC). To maintain high TC with good piezoelectric properties in KNN-based lead-free piezoelectric ceramics, this study investigates the effect of Li-doping on the dielectric and piezoelectric properties of 0.96Na0.5K0.5NbO3-0.04SrTiO3 (KNN-4ST) ceramics. As a result, the orthorhombic-tetragonal phase transition was observed at 2 mol% Li2CO3 modified KNN-4ST ceramics, whose TC, d33 and kp values are 328℃, 165pC/N and 0.33, respectively.

Ferroelectric and Magnetic Properties of Dy and Co Co-Doped $BiFeO_3 $ Ceramics

  • 유영준;박정수;이주열;강지훈;이광훈;이보화;김기원;이영백
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.260-260
    • /
    • 2013
  • Multiferroic materials have attracted much attention due to their fascinating fundamental physical properties and technological applications in magnetic/ferroelectric data-storage systems, quantum electromagnets, spintronics, and sensor devices. Among single-phase multiferroic materials, $BiFeO_3 $ is a typical multiferroic material with a room temperature magnetoelectric coupling in view of high magnetic-and ferroelectric-ordering temperatures (Neel temperature $T_N$~647 K and Curie temperature $T_C$~1,103 K). Rare-earth ion substitution at the Bi sties is very interesting, which induces suppressed volatility of Bi ion and improved ferroelectric properties. At the same time, Fe-site substitution with magnetic ions is also attracting, and the enhanced ferromagnetism was reported. In this study, $Bi_{1-x}Dy_xFe_{0.95}Co_{0.05}O_3$ (x=0, 0.05 and 0.1) bulk ceramic compounds were prepared by solid-state reaction and rapid sintering. High-purity $Bi_2O_3$, $Dy_2O_3$, $Fe_2O_3$ and $Co_3O_4$ powders with the stoichiometric proportions were mixed, and calcined at $500^{\circ}C$ or 24 h to produce $Bi_{1-x}Dy_xFe_{0.95}Co_{0.05}O_3$. The samples were immediately put into an oven, which was heated up to $800^{\circ}C$ nd sintered in air for 30 min. The crystalline structure of samples was investigated at room temperature by using a Rigaku Miniflex powder diffractometer. The field-dependent magnetization measurements were performed with a vibrating-sample magnetometer. The electric polarization was measured at room temperature by using a standard ferroelectric tester (RT66B, Radiant Technologies).

  • PDF

졸겔법에 의한 Ba-ferrite분말의 제조 및 자기적 특성 연구 (Fabrication and Magnetic Properties of Ba Ferrite Powders by Sol-gel Process)

  • 안성용;이상원;최동혁;심인보;김철성
    • 한국자기학회지
    • /
    • 제13권4호
    • /
    • pp.165-170
    • /
    • 2003
  • BaFe$_{12}$ O$_{19}$ 분말을 sol-gel법을 이용하여 제조하였다. X-선 회절분석결과 hexagonal 결정구조를 갖으며 격자상수 a와 c는 a=5.822, c=23.215 $\AA$으로 분석되었다 뫼스바우어 분광기 실험을 통해 Curie온도는 780$\pm$3K 임을 확인할 수 있었으며, 4f$_2$, 2a. 4f$_1$, 12k, 2b의 5-site에 해당하는 각각의 이성질체이동값이 상온에서 0.26, 0.24, 0.15, 0.25, 0.24 mm/s로서 Fe$^{3+}$ 의 상태로 존재함을 알 수 있었다. 접근의 법칙(Law of approach to saturation)에 의해 결정자기 이방성 에너지 H$_{A}$ 와 결정자기 이방성 상수 $K_1$를 계산하였으며 95$0^{\circ}C$에서 열처리한 바륨페라이트의 경우 $K_1$ = 2.5 ${\times}$ $10^{6}erg/cm^3$ 그리고 H$_{A}$ = 14 kOe 값을 가졌다.