• Title/Summary/Keyword: Cure Process

Search Result 291, Processing Time 0.026 seconds

Research on the formulation and process of base bleed unit inhibitor for changing cure agent (항력감소제용 연소방지제의 경화제변경을 위한 조성 및 공정연구)

  • Kim, Jae-Woo;Lee, Dug-Bum;Park, Jong-Wan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.652-655
    • /
    • 2010
  • BBU attached to the 155mm is the weapon system for the extension of range through the reduction of base drag. This research focus on the development of inhibitor formulation changing cure agent from DDI to IPDI. Development process is as follows. First, the formulation test about basic property Second, the study on the application of process. Third, the tests for the quality and aging properties. The test results are satisfied with the all of the requirments. In results, this research is contributed to the stable manufacturing in the instability of supplying of cure agent.

  • PDF

Measurement of effective cure shrinkage of EMC using dielectric sensor and FBG sensor (유전 센서 및 광섬유 센서를 이용한 EMC 유효 경화 수축 측정)

  • Baek, Jeong-hyeon;Park, Dong-woon;Kim, Hak-sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.83-87
    • /
    • 2022
  • Recently, as the thickness of the semiconductor package becomes thinner, warpage has become a major issue. Since the warpage is caused by differences in material properties between package components, it is essential to precisely evaluate the material properties of the EMC(Epoxy molding compound), one of the main components, to predict the warpage accurately. Especially, the cure shrinkage of the EMC is generated during the curing process, and among them, the effective cure shrinkage that occurs after the gelation point is a key factor in warpage. In this study, the gelation point of the EMC was defined from the dissipation factor measured using the dielectric sensor during the curing process similar with actual semiconductor package. In addition, DSC (Differential scanning calorimetry) test and rheometer test were conducted to analyze the dielectrometry measurement. As a result, the dielectrometry was verified to be an effective method for monitoring the curing status of the EMC. Simultaneously, the strain transition of the EMC during the curing process was measured using the FBG (Fiber Bragg grating) sensor. From these results, the effective cure shrinkage of the EMC during the curing process was measured.

Study on Cure Monitoring for Epoxy Resin Using Fiber Optic Sensor System (광섬유 센서를 이용한 에폭시 수지의 경화도 측정)

  • Kim, J.B.;Byun, J.H.;Lee, C.H.;Lee, S.K.;Um, M.K.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.37-41
    • /
    • 2005
  • The curing of thermoset resin is accompanied with the changes in chemical and physical properties. The cure monitoring techniques can be designed by tracing these property changes. This paper presents the cure monitoring technique with fiber optic sensors to detect the change of refractive index during the polymerization process of engineering epoxy resin. The fiber optic sensor system was developed to measure the reflection coefficient at the interface between the fiber optic and the resin. The correlation between the sensor output and the degree of cure was performed following Lorentz-Lorenz law. The isothermal data from the sensors are compared with the data from differential scanning calorimeter.

  • PDF

Cure Kinetics and Dynamic Mechanical Properties of an Epoxy/Polyoxypropylene Diamine System (에폭시/폴리옥시프로필렌 디아민계의 경화 반응속도 및 동역학 특성 분석)

  • Huang, Guang-Chun;Lee, Jong-Keun
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.196-202
    • /
    • 2011
  • The cure kinetics of a bisphenol A epoxy resin and polyoxypropylene diamine curing agent system are investigated in both dynamic and isothermal conditions by differential scanning calorimetry (DSC). In dynamic experiments, the shift of exothermic peaks obtained at different heating rates is used to obtain activation energy of overall cure reaction based on the methods of Ozawa and Kissinger. Isothermal DSC data at different temperatures are fitted to an autocatalytic Kamal kinetic model. The kinetic model is in a good agreement with the experimental data in the initial stage of cure. A diffusion effect is incorporated to describe the later stage of cure, predicting the cure kinetics over the whole range of curing process. Also, dynamic mechanical analysis is performed to evaluate the storage modulus and average molecular weight between crosslinkages.

A Study on the Effect of Shrinkage on Lens Deformation in Optical Lens Manufacturing Process Using Thermosetting Resin Material (열경화성 수지 재료를 이용한 광학 렌즈 제조공정에서 렌즈 변형에 대한 수축률이 영향에 관한 연구)

  • Park, Si Hwan
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.9-15
    • /
    • 2022
  • In order to reduce the manufacturing costs of the glass lens, it is necessary to manufacture a lens using a UV curable resin or a thermosetting resin, which is a curable material, in order to replace a glass lens. In the case of forming a lens using a thermosetting material, it is necessary to form several lenses at once using the wafer-level lens manufacturing technologies due to the long curing time of the material. When a lens is manufactured using a curable material, an error in the shape of the lens due to the shrinkage of the material during the curing process is an important cause of defects. The major factors for these shape errors and deformations are the shrinkage and the change of mechanical properties in the process of changing from a liquid material during curing to a solid state after complete curing. Therefore, it is necessary to understand the curing process of the material and to examine the shrinkage rate and change of physical properties according to the degree cure. In addition, it is necessary to proceed with CAE for lens molding using these and to review problems in lens manufacturing in advance. In this study, the viscoelastic properties of the material were measured during the curing process using a rheometer. Using the results, Rheological investigation of cure kinetics was performed. At the same time, The shrinkage of the material was measured and simple mathematical models were created. And using the results, the molding process of a single lens was analyzed using Comsol, a commercial S/W. In addition, the experiment was conducted to compare and verify the CAE results. As a result, it was confirmed that the shrinkage rate of the material had a great influence on the shape precision of the final product.

Effect of White Water Quality on AKD Sizing of Linerboard (백수의 수질에 따른 라이너지의 AKD 사이징)

  • Lee, Hak-Lae;Seo, Man-Seok;Shin, Jong-Ho;Youn, Hye-Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.2 s.115
    • /
    • pp.9-15
    • /
    • 2006
  • Neutral sizing is required for linerboard to solve the troubles in strength and process caused by recycled raw materials. AKD sizing efficiency can be influenced by process condition like white water quality, fines retention and so on. Therefore, this study was aimed to evaluate sizing performance of general and fast cure type AKDs using process water obtained from linerboard mill. To evaluate effect of process water quality on AKD sizing, white water was diluted with tap water at the different dilution ratios and UKP slurry was sized using the prepared water. Also, effects of inorganic and organic ion material on sizing were examined. When white water was used for stock forming, UKP sheet showed very low sizing degree. Sizing degree of sheet was increased with increase of dilution ratio because water quality was improved. Especially anionic organic material had a greater influence on AKD sizing than inorganic material. When white water quality was deteriorated, fast cure type AKD showed superior sizing performance to general type AKD.

Cure real monitering sensor for UV curable thin epoxy film based on side-polished single mode fiber

  • Kim, Kwang-Taek;HwangBo, Sueng;Kang, Yong-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.254-258
    • /
    • 2007
  • A novel cure sensor based on the side-polished single mode fiber has been proposed and demonstrated. Two different UV curable epoxies were used to verify the feasibility of the side-polished single mode fiber as a high sensitivity cure sensor. The volume change of the epoxy by UV curing results in a corresponding change of the refractive index. The sensor can be used to monitor the curing process, the refractive index variation and the volume change of epoxy in real time during the UV curing process. In addition, small birefringence of the epoxy film can be detected using the sensor.

AE Characteristics on Microscopic Failure Behavior of Carbon/Epoxy Comosite Prepared by Cocure and Precure Process (Cocure/Precure 경화공정에 의해 제조된 Carbon/Epoxy 복합재료의 미시적 파손거동에 대한 AE 특성)

  • Lee, Jin-Gyeong;Lee, Jun-Hyeon;Lee, Min-Rae;Choe, Heung-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2520-2528
    • /
    • 2000
  • Mechanical and physical properties of composite materials make a great difference due to their cure process condition. In order to clarify the effect of cure process condition on the microscopic damage behavior and failure mechanism of Carbon/Epoxy composites, three point bend test has been performed. For this purpose, two kinds of specimens with single adhesive and multiple adhesive layers were prepared. For single adhesive layer, four different types of specimen were used, that is, non-sanding, sanding, cocured, laminated specimens. Three different types of specimen were also used for the multiple adhesive layer, non-sanding, sanding, cocured specimens. Acoustic emission technique has also been employed to monitor the damage progresses associated with each micro-failure mechanism. The characteristics of AE parameters associated with micro-failure mechanism of each specimen were discussed.

In Situ Detection of the Onset of Phase Separation and Gelation in Epoxy/Anhydride/Thermoplastic Blends

  • Choe, Young-Son;Kim, Min-Young;Kim, Won-Ho
    • Macromolecular Research
    • /
    • v.11 no.4
    • /
    • pp.267-272
    • /
    • 2003
  • The isothermal cure reactions of blends of epoxy (DGEBA, diglycidyl ether of bisphenol A)/anhydride resin with polyamide copolymer (poly(dimmer acid-co-alkyl polyamine)) or PEI were studied using differential scanning calorimetry (DSC). Rheological measurements have been made to investigate the viscosity and mechanical relaxation behavior of the blends. The reaction rate and the final cure conversion were decreased with increasing the amount of thermoplastics in the blends. Lower values of final cure conversions in the epoxy/thermoplastic blends indicate that thermoplastics hinder the cure reaction between the epoxy and the curing agent. Complete miscibility was observed in the uncured blends of epoxy/thermoplastics up to $120^{\circ}C$ but phase separations occurred in the early stages of the curing process at higher temperatures than $120^{\circ}C$. According to the rheological measurement results, a rise of G' and G" at the onset of phase separation is seen. A rise of G' and G" is not observed for neat epoxy system since no phase separation is seen during cure reaction. At the onset of phase separation the rheological behavior was influenced by the amount of thermoplastics in the epoxy/thermoplastic blends, and the onset of phase separation can be detected by rheological measurements.