• Title/Summary/Keyword: Curcuma longa Linn.

Search Result 3, Processing Time 0.015 seconds

Hypoglycemic effect of a polyherbal aqueous extract in experimentally induced diabetic rats

  • Vasu, Vihas T.;Thaikoottathil, Jyoti V.;Gupta, Sarita
    • Advances in Traditional Medicine
    • /
    • v.5 no.2
    • /
    • pp.160-166
    • /
    • 2005
  • The present study was carried out to investigate the hypoglycemic effect of a polyherbal aqueous extract (Curcuma longa Linn., Emblica officinalis Gaertn., Trigonella foenum-graecum Linn., Enicostemma littorale Blume) in alloxan-induced diabetic rats. Short term experiments showed a decrease in blood glucose levels at $2^{nd}\;hr$ of administration of the aqueous extract in alloxan-induced diabetic rats with increase in serum insulin levels. The extract did not show any effect on blood glucose or serum insulin levels in normoglycaemic rats. Treatment with the extract (1.5 g dry plant equivalent extarct/100 g body weight/day) for 20 days in diabetic rats showed a significant decrease in blood glucose and glycosylated haemoglobin levels and an increase in serum insulin levels. The aqueous extract also showed an enhanced glucose-induced insulin release at 11.1 mM glucose from isolated rat pancreatic islets. The extract did not show any toxicity at the particular dose used.

The Protective Effects of Curcuma longa Linn. Extract on Carbon Tetrachloride-Induced Hepatotoxicity in Rats via Upregulation of Nrf2

  • Lee, Hyeong-Seon;Li, Li;Kim, Hyun-Kyung;Bilehal, Dinesh;Li, Wei;Lee, Dong-Seok;Kim, Yong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.9
    • /
    • pp.1331-1338
    • /
    • 2010
  • This study was designed to investigate the potentially protective effects of Curcuma longa Linn. extract (CLE) on carbon tetrachloride ($CCl_4$)-induced hepatotoxicity in rats. Male Sprague-Dawley rats were pretreated with 50 or 100mg/kg of CLE or 100mg/kg of butylated hydroxytoluene(BHT) for 14 days before $CCl_4$ administration. In addition, the CLE control group was pretreated with 100mg/kg CLE for only 14 days. Three hours after the final treatment, a single dose of $CCl_4$ (20mg/kg) was administrated intraperitoneally to each group. After the completion of this phase of the experiment, food and water were removed 12 h prior to the next step. The rats were then anesthetized by urethane and their blood and liver were collected. It was observed that the aspartate aminotransferase and alanine aminotransferase activities of the serum, and the hepatic malondialdehyde levels had significantly decreased in the CLE group when compared with the $CCl_4$-treated group. The antioxidant activities, such as superoxide dismutase, catalase, and glutathione peroxidase activities, in addition to glutathione content, had increased considerably in the CLE group compared with the $CCl_4$-treated group. Phase II detoxifying enzymes, such as glutathione S-transferase, were found to have significantly increased in the CLE group as opposed to the $CCl_4$-treated group. The content of Nrf2 was determined by Western blot analysis. Pretreated CLE increased the level of nuclear translocated Nrf2, and the Nrf2 then increased the activity of the antioxidant and phase II detoxifying enzymes. These results indicate that CLE has protective effects against $CCl_4$-induced hepatotoxicity in rats, via activities of antioxidant and phase II detoxifying enzymes, and through the activation of nuclear translocated Nrf2.

Curcumin Suppresses Activation of NF-κB and AP-1 Induced by Phorbol Ester in Cultured Human Promyelocytic Leukemia Cells

  • Han, Seong-Su;Keum, Young-Sam;Seo, Hyo-Joung;Surh, Young-Joon
    • BMB Reports
    • /
    • v.35 no.3
    • /
    • pp.337-342
    • /
    • 2002
  • Many components that are derived from medicinal or dietary plants possess potential chemopreventive properties. Curcumin, a yellow coloring agent from turmeric (Curcuma longa Linn, Zingiberaceae), possesses strong antimutagenic and anticarcinogenic activities. In this study, we have found that curcumin inhibits the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced nuclear factor ${\kappa}B$ (NF-${\kappa}B$) activation by preventing the degradation of the inhibitory protein $I{\kappa}B{\alpha}$ and the subsequent translocation of the p65 subunit in cultured human promyelocytic leukemia (HL-60) cells. Alternatively, curcumin repressed the TPA-induced activation of NF-${\kappa}B$ through direct interruption of the binding of NF-${\kappa}B$ to its consensus DNA sequences. Likewise, the TPA-induced DNA binding of the activator protein-1 (AP-1) was inhibited by curcumin pretreatment.