• Title/Summary/Keyword: Cupric Citrate

Search Result 2, Processing Time 0.016 seconds

Effect of Copper Source (Cupric Citrate vs Cupric Sulfate) and Level on Growth Performance and Copper Metabolism in Pigs

  • Armstrong, T.A.;Spears, J.W.;van Heugten, E.;Engle, T.E.;Wright, C.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1154-1161
    • /
    • 2000
  • Two experiments were conducted to evaluate the efficacy of cupric citrate (Cu-citrate) relative to cupric sulfate $(CuSO_4)$ as a Cu source for weanling and grow-finish pigs. In addition, the use of liver and bile Cu concentrations as indices of the bioavailability of Cu sources was investigated. Experiment one consisted of a nursery phase (35 d; initial BW=6.4 kg, final BW=21.4 kg) followed by a grow-finish phase (103 d; initial BW=21.5 kg, final BW=111.7 kg). Experiment two only consisted of a nursery phase (35 d; initial BW=6.3 kg, final BW=18.6 kg). Dietary treatments were identical for both experiments and consisted of: control (10 ppm $CuSO_4$); control+66 or 225 ppm $CuSO_4$; control+33, 66, or 100 ppm Cu-citrate. An antibiotic was included in diets for Exp. 1 but not Exp. 2. In both experiments, growth performance variables were similar for pigs receiving Cu-citrate and $CuSO_4$; however, growth performance was not improved by high concentrations of $CuSO_4$. Liver and bile Cu were increased (p<0.05) by 225 ppm $CuSO_4$; however, lower dietary concentrations of Cu from either $CuSO_4$ or Cu-citrate did not affect the Cu concentration of liver or bile relative to that observed in the control pigs. Irrespective of Cu source, there was no linear (p>0.10) increase in plasma Cu with increasing Cu concentrations in the diet for both experiments. However, the plasma Cu concentrations were highest (p<0.10) in pigs receiving diets supplemented with 225 ppm $CuSO_4$. Sixteen randomly chosen pigs per treatment in Exp. 1 were continued through the grow-finish phase. Body weight gain and feed intake were improved (p<0.10) by 66 ppm $CuSO_4$, but other dietary Cu treatments did not alter pig performance compared to the control diet. Plasma Cu concentrations were increased (p<0.10) by 225 ppm $CuSO_4$ in the growing phase and by 225 ppm $CuSO_4$ and 100 ppm Cu-citrate in the finishing phase. These data reveal no consistent effect of $CuSO_4$ on performance; therefore, it is difficult to assess the efficacy of these two Cu sources. In addition, these studies demonstrate that liver and bile Cu are not good indicators of Cu bioavailability in pigs fed adequate to pharmacological concentrations of Cu.

Effects of graded levels of cupric citrate on growth performance, antioxidant status, serum lipid metabolites and immunity, and tissue residues of trace elements in weaned pigs

  • Peng, Chu Cai;Yan, Jia You;Dong, Bin;Zhu, Lin;Tian, Yao Yao;Gong, Li Min
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.538-545
    • /
    • 2017
  • Objective: The goal of this study was to investigate the effects of cupric citrate (CuCit) on growth performance, antioxidant indices, serum lipid metabolites, serum immune indices, and tissue residues of copper (Cu), zinc, and iron in weaned pigs. Methods: A total of 180 weaned pigs ($Duroc{\times}Landrace{\times}Large$ White) with an average body weight of $8.98{\pm}1.21kg$ were randomly assigned to a corn-soybean meal control ration, or 4 similar rations with 30, 60, 120, or 240 mg/kg Cu as CuCit. All diets contained 10 mg/kg Cu as cupric sulfate from the vitamin-mineral premix. The experiment was divided into two phases: 0 to 14 d (phase 1) and 15 to 28 d (phase 2). Results: Average daily gain (ADG; linearly, p<0.01) and average daily feed intake (ADFI; linearly and quadratically, p<0.05) were affected by an increase in CuCit during phase 2. Overall period, ADG (p<0.05) and ADFI (p<0.01) were linearly increased with increasing dietary levels of CuCit. Serum malondialdehyde concentrations (p<0.05) and glutathione peroxidase activity (p<0.01) linearly decreased and increased respectively with an increase in CuCit. Serum levels of Cu-Zn superoxide dismutase were linearly affected with an increase in CuCit (p<0.01). Hepatic malondialdehyde levels decreased with an increase in CuCit (linearly and quadratically, p<0.01). Serum total cholesterol concentrations were quadratically affected (p<0.05) and decreased in pigs fed Cu as CuCit at 60 and 120 mg/kg and increased in pigs fed 240 mg/kg Cu as CuCit. Serum high-density lipoprotein concentrations were linearly affected with an increase in CuCit (p<0.01). Serum $IL-1{\beta}$ levels were quadratically affected (p<0.05) by dietary treatment. Compared with other treatments, 240 mg/kg Cu from CuCit quadratically increased hepatic (p<0.01) and renal (p<0.05) Cu concentrations, and quadratically decreased hepatic and renal iron concentrations (p<0.05). Conclusion: Cu administered in the form of CuCit at a dosage range of 30 to 60 mg/kg, effectively enhanced the growth performance and antioxidant status of weaned pigs.