• Title/Summary/Keyword: Cup drawing

Search Result 219, Processing Time 0.021 seconds

The Spinnability of Multi-step Cylindrical Cup in Spinning Process (스피닝 공정을 이용한 다단 원형 컵 형상의 성형성에 관한 연구)

  • 박중언;한창수;최석우;김승수;나경환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1016-1020
    • /
    • 2001
  • The spinning is a very effective manufacturing technology for short production runs in a variety of sizes and shapes, because it can form the cross-section or tubular parts various shapes. However extensive experimental and analytical research has not been carried out. In this study, and fundamental experiment was conducted to improve productivity with process parameter such as tool path, angle of roller holder(a), feed rate(v) and corner radius of forming roller(Rr). These factors were selected as variables in the experiment because they were most likely expected to have and effect on spring back. The clearance was controlled in order to achieve the precision product which is comparable to deep drawing one. And also thickness and diameter distribution of a multistage cup obtained by shear spinning process were observed and compared with those of a commercial product produced by conventional deep drawing.

  • PDF

Formability Study on Weld Line Location and Movement of Laser-Tailor Welded Blanks

  • Hong, Joo-Pyo;Kim, Heon-Young;Oh, Soo-Ik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.19-24
    • /
    • 1997
  • The weld line location and the weld line movement in stamping with laser-tailor welded blanks(TWB) were investigated through square cup deep drawing tests. The step blank holder was introduced to form TWB of different thicknesses without wrinkling, and the non-uniform blank holding force(BHF) was enforced to control weld line movement. Test results of the blanks with shifted weld lines showed that the large portion of the thinner area could result in a large weld line movement. Careful selection of the weld line location and the BHF control should be adapted in TWB design to avoid failures and to ensure its formability.

  • PDF

Blank Design of The High Miniature Rectangular Vibrator Case for The Cellular Phone (Cellular Phone용 초소형 사각 진동모터 케이스의 블랭크 설계)

  • Ha, B.K.;Ku, T.W.;Kang, B.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.754-758
    • /
    • 2000
  • Milli-structure components are classified as component group whose size is between macro and micro scale. that is, about less than 20mm and larger than 1mm. The forming of these components has a typical phenomenon of bulk deformation with thin sheets because of the forming size. In order to conventional metal forming, where numerical process simulation is already fully applied, the micro-forming process is characterized by some scale effects which have to be considered in an advanced process simulation. milli-structure rectangular cup drawing is analyzed and designed using the finite element method and experiment. The result of the finite element analysis is confirmed by a series of experiments.

  • PDF

Formability evaluation of coated steel sheet and uncoated steel sheet with consideration of friction characteristic (도금강판과 무도금강판의 마찰특성을 고려한 성형성 평가)

  • Lee K. S.;Lee J. M.;Kim S. J.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.440-443
    • /
    • 2005
  • Recently the usage of galvanealed steel sheet was increased in order to protect corrosion in automobile industry. So, the alternative of steel sheet was investigated in a point of formability. Generally it was known that uncoated steel sheet has better mechanical properties than coated steel sheet. But, contrary results were sometimes occurred in workplace. This reason is the effect of friction. In this study, the formability of steel sheet considering friction characteristics was investigated with tensile test, cup drawing test and finite element method.

  • PDF

Formability of deep drawing process for reentrant cross section (오목형 단면 딥드로잉에서의 성형성)

  • 박민호;김상진;서대교
    • Transactions of Materials Processing
    • /
    • v.5 no.2
    • /
    • pp.138-144
    • /
    • 1996
  • The differences of formability with maximum cup depth of drawn product and thickness strain distribution are compared for two kinds of blank shapes which are suggested optimum shape and conventional square shape. The suggested blank is determined by backward tracing technique of rigid-plastic FEM. The deeper cup without wrinkle and flange part could be obtained from the suggested blank shape however the cross sevtion sup from the square blank could not be kept smooth thickness strain distribution and defended those phenomena..

  • PDF

Verification of Sensitivity Method for the Design of Optimal Blanks of General Shaped Parts (일반적인 형상의 스탬핑의 최적블랭크 설계를 통한 민감도법의 검증)

  • 손기찬;심현보;황현태
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.15-22
    • /
    • 2001
  • The sensitivity method has been utilized to find initial blank shapes which transform into desired shapes after forming. From the information of die shapes, target shape and material properties, the corresponding initial blank which gives final shape after deformation has been found. Drawings of a trapezoidal cup, a cross-shaped cup and an oil pan have been chosen as the examples. At every case the optimal blank shape has been obtained only a few times of modification without any predetermined deformation path. With the predicted optimal blank, both computer simulation and experiment are performed. Excellent agreements are recognized between simulation and experiment at every cases Through the investigation, the sensitivity method is found to be effective in obtaining optimal blank shapes in drawing of complex shapes.

  • PDF

A Study on the Computer-Aided Design System of Axisymmetric Deep Drawing Process(II) (축대칭 디프 드로잉 제품의 공정설계 시스템에 관한 연구(II))

  • Park, S.B.;Choi, Y.;Kim, B.M.;Choi, J.C.;Lee, J.
    • Transactions of Materials Processing
    • /
    • v.5 no.1
    • /
    • pp.61-71
    • /
    • 1996
  • A computer-aided process design system for axisymmetric deep drawing products has been developed. An approach to the system is based on the knowledge based system. Knowledges for the system are formulated from the plasticity theory handbooks experimental results and empirical knowhow of the field experts. the system is composed of four main modules such as geometrical design test & rectification and user modification. The input to the system is final sheet-metal object geometry and the output from the system is process sequence with intermedi-ate objects geometries and process parameters, such as drawing load blank holding force clearance cup-drawing coefficient.

  • PDF

The Applicatiion of Finite Element Method to Process Design Considering Forming Limit in Deep Drawing (성형한계를 고려한 디프 드로잉 공정설계에 대한 유한 요소 해석)

  •  
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.74-82
    • /
    • 1998
  • The limit drawing ratio (LDR) is a major process parameter in the process design of deep drawing. If the actual drawing ratio is greater than the LDR for a particular stage, then an intermediate stage has to be added to the process sequence to avoid failure during the ratio. In this study, the optimal process design considering forming limit is performed for the first-drawing and redrawing by using finite element method combined with ductile fracture criterion. The LDR and the site of fracture initiation are predicted by means of the fracture criterion. From the results of finite element analysis, the optimal value of drawing ratio is obtained, which contributes to the more uniform distribution of thickness and the smaller values of the ductile fracture in final cup.

Sensitivity Analysis of Material and Process Variables Affecting on the Stamping Formability (재료변수와 공정변수가 스템핑 성형성에 미치는 영향 연구)

  • Kim, Youngsuk;Park, KeeChul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2246-2256
    • /
    • 1996
  • To investigate the effect of material and precess variables on stamping formability of sheet materials, simulations for the cup drawing and the Yoshida buckling test were carried out using ABAQUS, commercial nonlinear finite element analysis code. The various factor effects on stamping formability of sheet materials were analyzed by the designed process according to Taguch's orthogonal array experiment. Cup drawing simulation showed that local neckling was very sensitive to plastic anisotropy parameter of sheet material and friction coefficient between sheet and tool interface. Simulations for the Yoshida buckling test have clarified that buckling behaviour of sheet material was mostly susceptible to yield stress and sheet thickness mostly. However, plastic anisotropy parameter and strain hardening coefficient affect moderately buckling behaviour of steel sheets after the buckling initiation.

Experimental Study on Non-Axisymmetric Rectangular Cup using Multi-Stage Deep Drawing Process (직사각 컵 성형을 위한 다단 디프드로잉 공정의 실험적 연구)

  • Ku, T.W.;Park, J.W.;Heo, S.C.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.4
    • /
    • pp.253-262
    • /
    • 2010
  • For multi-stage deep drawing process including ironing operation and biaxial forming in this study, tool developments are achieved, and the developed tool sets are applied to experimental investigations. In process and tool designs, a contact condition between intermediate blank and lower die is considered as the sequential one. In this study, the material used is cold-rolled thin sheet (SPCE) with the initial thickness of 0.4mm. From the experimental approaches, several failures such as tearing, localized thickening and thinning, are observed. To solve these failures, the contact surface on the lower die is modified. As the experimental results by applying the modified lower die, it is investigated that the failures are not occurred, and the excessive deformation behavior due to the thinning and thickening effects are decreased. Furthermore, the thickness distributions on the major axis and the minor axis of each intermediate blank are investigated to be already satisfied the target (ironing) thickness, respectively. By this systematic approach, it is confirmed that the experimental results show good agreements with the designed and required configuration of each deformed and final products.