• Title/Summary/Keyword: Cumulus oocyte complex

Search Result 35, Processing Time 0.035 seconds

Simultaneous Detection of Seven Phosphoproteins in a Single Lysate Sample during Oocyte Maturation Process (난자성숙 과정의 단일 시료에서 일곱 가지 인산화 단백질의 동시 분석 방법)

  • Yoon, Se-Jin;Kim, Yun-Sun;Kim, Kyeoung-Hwa;Yoon, Tae-Ki;Lee, Woo-Sik;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.36 no.3
    • /
    • pp.187-197
    • /
    • 2009
  • Objective: Phosphorylation and dephosphorylation of proteins are important in regulating cellular signaling pathways. Bead-based multiplex phosphorylation assay was conducted to detect the phosphorylation of seven proteins to maximize the information obtained from a single lysate of stage-specific mouse oocytes at a time. Methods: Cumulus-oocyte complexes (COCs) were cultured for 2 h, 8 h, and 16 h, respectively to address phosphorylation status of seven target proteins during oocyte maturation process. We analyzed the changes in phosphorylation at germinal vesicle (GV, 0 h), germinal vesicle breakdown (GVBD, 2 h), metaphase I (MI, 8 h), and metaphase II (MII, 16 h in vitro or in vivo) mouse oocytes by using Bio-Plex phosphoprotein assay system. We chose seven target proteins, namely, three mitogen-activated protein kinases (MAPKs), ERK1/2, JNK, and p38 MAPK, and other 4 well known signaling molecules, Akt, GSK-$3{\alpha}/{\beta}$, $I{\kappa}B{\alpha}$, and STAT3 to measure their phosphorylation status. Western blot analysis and kinase inhibitor treatment for ERK1/2, JNK, and Akt during in vitro maturation of oocytes were conducted for the confirmation. Results: Phosphorylation of ERK1/2, JNK, p38 MAPK and STAT3 was increased over 3 folds up to 20 folds, while phosphorylation of the other three signal molecules, Akt, GSK-$3{\alpha}/{\beta}$, and $I{\kapa}B{\alpha}$ was less than 3 folds. All of these results except for Akt were statistically significant (p<0.05). Conclusion: This is the first report on the new and valuable method measuring many phosphoproteins simultaneously in one minute sample such as oocyte lysates. All of the three MAPKs, ERK1/2, JNK, and p38 MAPK are involved in the process of mouse oocyte maturation. In addition, STAT3 might be important regulator of oocyte maturation, while Akt phosphorylation at Serine 473 may not be involved in the regulation of oocyte maturation.

Treatment of Epidermal Growth Factor (EGF) enhances Nuclear Maturation of Porcine Oocytes and Stimulates Expression of ER/Golgi Transport Proteins

  • Hwangbo, Yong;Oh, Hae-In;Lee, Sang-Hee;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Development and Reproduction
    • /
    • v.21 no.2
    • /
    • pp.131-138
    • /
    • 2017
  • This study was conducted to investigate stimulatory effect of epidermal growth factor (EGF) on nuclear maturation and the expression level of EGF-receptor (EGFR), GM-130 (a marker of Golgi apparatus), transport protein Sec61 subunit beta ($Sec61{\beta}$), and coatomer protein complex subunit gamma 2 (COPG2) in porcine oocytes. The cumulus-oocyte complexes were collected from follicle with 3-6 mm in diameter. They were incubated in medium with/without EGF for 22 h (IVM I) and subsequently incubated hormone-free medium with/without EGF for 22 h (IVM II). Nuclear maturation state was checked by aceto-orcein stain. Protein expression of EGFR, GM-130, $Sec61{\beta}$, and COPG2 were measured by immunofluorescence. In results, nuclear maturation of oocytes in EGF non-treated oocytes were significantly lower than EGF-treated groups at IVM I or IVM II stage (P<0.05), whereas maturational rate in EGF treatment groups at both of IVM stage was higher in among the all treatment groups (P<0.05). EGFR, GM-130, $Sec61{\beta}$ and COPG2 were expressed in the cytoplasm of oocytes. Especially, GM-130 and EGFR were strongly expressed, but $Sec61{\beta}$ and COPG2 were weakly expressed in cortical area of cytoplasm. The protein level of GM-130, $Sec61{\beta}$, and COPG2 were significantly higher in the EGF-treated groups (P<0.05). However EGFR was no difference between non EGF-treated groups and control. In conclusion, EGF plays an important role in the systems for oocyte maturation with endoplasmic reticulum and Golgi apparatus. In addition, the protein levels of $Sec61{\beta}$ and COPG2 could be changed by EGF in the porcine oocytes during maturation.

Species-specific Expression of Rpia Transcript in Cumulus-oocyte-complex (난자-난구세포 복합체에서 발현하는 Rpia 유전자의 종 특이적 발현)

  • Kim, Yun-Sun;Yoon, Se-Jin;Kim, Eun-Young;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.34 no.2
    • /
    • pp.95-106
    • /
    • 2007
  • Objective: We previously identified differentially expressed genes (DEGs) between germinal vesicle (GV) and metaphase II (MII) mouse oocyte. The present study was accomplished as a preliminary study to elucidate the role of ribose 5-phosphate isomerase A (Rpia), the essential enzyme of the pentose phosphate pathway (PPP), in oocyte maturation. We observed expression of Rpia in the mouse and porcine oocytes. Methods: Expression pattern of the 11 MII-selective DEGs in various tissues was evaluated using RT-PCR and selected 4 genes highly expressed in the ovary. According to the oocyte-selective expression profile, we selected Rpia as a target for this study. We identified the porcine Rpia sequence using EST clustering technique, since it is not yet registered in public databases. Results: The extended porcine Rpia nucleotide sequence was submitted and registered to GenBank (accession number EF213106). We prepared primers for porcine Rpia according to this sequence. In contrast to the oocyte-specific expression in the mouse, Rpia was expressed in porcine cumulus and granulosa cells as well as in oocytes. Conclusion: This is the first report on the characterization of the Rpia gene in the mouse and porcine ovarian cells. Results of the present study suggest that the mouse and porcine COCs employ different mechanism of glucose metabolism. Therefore, the different metabolic pathways during in vitro oocyte maturation (IVM) in different species may lead different maturation rates. It is required to study further regarding the role of Rpia in glucose metabolism of oocytes and follicular cell fore exploring the regulatory mechanism of oocyte maturation as well as for finding the finest culture conditions for in vitro maturation.

Effect of Thymeleatoxin on Mouse Oocyte Maturation (마우스 난 성숙과정에서의 Thymeleatoxin의 영향)

  • Lim E. A.;Shin J. H.;Choi T. S.
    • Reproductive and Developmental Biology
    • /
    • v.28 no.3
    • /
    • pp.187-190
    • /
    • 2004
  • Protein kinase C exists as a family of serine/threonine kinases which are broadly classified into three groups as cPKC nPKC and aPKC depending on their cofactor requirements. Previous studies have shown that the role of PKC in the process of mouse oocyte maturation. For example, phorbol 12-myristate 13-acetate which is known as an activator of cPKC and nPKC inhibits germinal vesicle break down and 1st polar body extrusion in maturing oocytes. In this study, the effect of thymeleatoxin, a specific activator of cPKC not nPKC, was tested comparing with PMA to address the roles of cPKC and nPKC during mouse oocyte maturation. Cumulus-oocyte complex were cultured in M16 medium for 6 or 12 hr with each of these PKC activators to investigate the effect of germinal vesicle breakdown (GVBD) or the extrusion of 1st polar body. IC/sup 50/ of GVBD were at concentrations of 50nM in PMA and 400nM in thymeleatoxin and of 1st polar body extrusion were 20nM in PMA and 200nM in thy- meleatoxin. The results suggest that activation of nPKC is more closely related to the inhibition of GVBD and 1st polar body extrusion than activation of cPKC. Additionally, we found that the oocytes inhibited 1st polar body extrusion with PMA or thymeleatoxin were arrested in metaphase I of first meiosis.

Effects of Culture Duration, Follicle Stimulating Hormone (FSH) Type, and Activin A Concentration on In Vitro Growth of Preantral Follicles and Maturation of Intrafollicular Oocytes

  • Choi, Jung Kyu
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.117-122
    • /
    • 2019
  • The objective of this study was to establish an in vitro culture system for ovarian preantral follicles of B6D2F1. First, we optimized the in vitro preantral-follicle culture by culture duration, follicle stimulating hormone (FSH) type, and activin A concentration. Duration of in vitro culture for 9, 11, and 13 days was sufficient for the normal development of preantral follicles to antral follicles. Formation of cumulus cell-oocyte complex (COC) was induced by treatment with human chorionic gonadotropin (hCG; 2.5 IU/mL) and epidermal growth factor (EGF; 5 ng/mL). In addition, metaphase II (MII) oocytes formed during this in vitro culture of preantral follicles. In vitro preantralfollicle culture for 9 days showed higher rates of growth and maturation, thus yielding a greater number of antral follicles, and there were significant differences (p < 0.05) in the number of MII oocytes (that formed from these preantral follicles via differentiation) between the 9-day culture and 11-day or 13-day culture. The follicles cultured for 9 days contained a tightly packed well-defined COC, whereas in follicles cultured for 11 days, the COC was not well defined (spreading was observed in the culture dish); the follicles cultured for 13 days disintegrated and released the oocyte. Second, we compared the growth of the preantral follicles in vitro in the presence of various FSH types. There were no significant differences in the growth and maturation rates and in differentiation into MII oocytes during in vitro culture between preantral follicles supplemented with FSH from Merck and those supplemented with FSH from Sigma. To increase the efficiency of MII oocyte formation, the preantral follicles were cultured at different activin A concentrations (0 to 200 ng/mL). The control follicles, which were not treated with activin A, showed the highest rate of differentiation into antral follicles and into MII oocytes among all the groups (0 to 200 ng/mL). Therefore, activin A (50 to 200 ng/mL) had a negative effect on oocyte maturation. Thus, in this study, we propose an in vitro system of preantral-follicle culture that can serve as a therapeutic strategy for fertility preservation of human oocytes for assisted reproductive medicine, for conservation of endangered species, and for creation of superior breeds.

Ganglioside GD1a Activates the Phosphorylation of EGFR in Porcine Oocytes Maturation in vitro

  • Park, Hyo-Jin;Kim, Jin-Woo;Park, Jae-Young;Yang, Seul-Gi;Jung, Jae-Min;Kim, Min-Ji;Koo, Deog-Bon
    • Journal of Embryo Transfer
    • /
    • v.32 no.1
    • /
    • pp.17-24
    • /
    • 2017
  • Ganglioside GD1a is specifically formed by the addition of sialic acid to ganglioside GM1a by ST3 ${\beta}$-galactoside ${\alpha}$-2,3-sialyltransferase 2 (ST3GAL2). Above all, GD1a are known to be related with the functional regulation of several growth factor receptors, including activation and dimerization of epidermal growth factor receptor (EGFR) in tumor cells. The activity of EGF and EGFR is known to be a very important factor for meiotic and cytoplasmic maturation during in vitro maturation (IVM) of mammalian oocytes. However, the role of gangliosides GD1a for EGFR-related signaling pathways in porcine oocyte is not yet clearly understood. Here, we investigated that the effect of ST3GAL2 as synthesizing enzyme GD1a for EGFR activation and phosphorylation during meiotic maturation. To investigate the expression of ST3GAL2 according to the EGF treatment (0, 10 and 50 ng/ml), we observed the patterns of ST3GAL2 genes expression by immunofluorescence staining in denuded oocyte (DO) and cumulus cell-oocyte-complex (COC) during IVM process (22 and 44 h), respectively. Expression levels of ST3GAL2 significantly decreased (p<0.01) in an EGF concentration (10 and 50 ng/ml) dependent manner. And fluorescence expression of ST3GAL2 increased (p<0.01) in the matured COCs for 44 h. Under high EGF concentration (50 ng/ml), ST3GAL2 protein levels was decreased (p<0.01), and their shown opposite expression pattern of phosphorylation-EGFR in COCs of 44 h. Phosphorylation of EGFR significantly increased (p<0.01) in matured COCs treated with GD1a for 44 h. In addition, ST3GAL2 protein levels significantly decreased (p<0.01) in GD1a ($10{\mu}M$) treated COCs without reference to EGF pre-treatment. These results suggest that treatment of exogenous ganglioside GD1a may play an important role such as EGF in EGFR-related activation and phosphorylation in porcine oocyte maturation of in vitro.

Effect of Purine on Meiotic Maturation of Mouse Immature Oocytes I. Actions of Purine, Human Fetal Cord Seruma and Human Mature Follicular Fluid in Germinal Vesicle Break Down (Purine이 생쥐 미성숙난자의 핵성숙에 미치는 영향 I. 난핵포붕괴(GVBD)에 대한 Purine, 인간태아제대혈청 및 인간성숙난포액의 작용)

  • 지희준;고정재;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.2
    • /
    • pp.75-83
    • /
    • 1993
  • Purine has been identified in the preparation of follicular fluid and shown an activity in maintaining oocyte meiotic arrest. Therefore this study was performed to examine the inhibitory effect of purine on germinal vesicle break down(GVBD) in the presence and absence of human fetal cord serum(HFCS) or human mature follicular fluid(HMFF), as a protein source, in vitro culture. Immature oocytes(GV stage) were collected from ovaries of 21∼28 days old ICR mice by puncturing the antral follicles with a fine needle, at 48 hrs after PMSG injection. Some of the oocytes were denuded by drawing the cumulus-enclosed(complex) oocytes in and out of a pasteur pipet. Complex oocytes and denuded oocytes were cultured 3 hrs. in T6 media containing 0.75mM adenosine or/and 4mM hypoxanthine, with HFCS or HMFF. Their GVBD rates were observed at every 1 hr. during the culture time. Both adenosine and hypoxanthine have shown a time-dependent inhibitory effect on GVBD in complex and denuded oocytes and the inhibitory effect was maximized in culture medium containing hypoxanthine and adenosine. HFCS and HMFF increased the GVBD rates in the presence of the purines, thus HFCS and HMFF may contain a factor that could reverse the inhibitory effect of purines. Also complex oocytes were more sensitive to not only the inhibitory effect of purines but the promoting action of HMFF on GVBD than denuded oocytes. Therefore it was reconfirmed that granulosa cells play an important part in meiotic arrest and resumption.

  • PDF

Secretory Proteins from Goat Oocytes Matured in Culture

  • Malakar, Dhruba;Majumdar, A.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.3
    • /
    • pp.340-345
    • /
    • 2002
  • In this experiment, oocytes were collected from goat ovaries available in slaughterhouse by follicle puncture method. Morphologically culturable type of oocytes which having compact, multilayered cumulus granulosa cell complex and evenly granulated cytoplasm, was separated under a stereozoom microscope. Oocytes were washed thoroughly in maturation medium containing TCM-199, $1{\mu}g/ml$ estradiol-$17{\beta}$, 0.5 ${\mu}g/ml$ FSH, $100{\mu}g/ml$ LH, 3 mg/ml BSA and 10% estrus goat serum. Washed oocytes were cultured into maturation medium on granulosa cell monolayer. Culture plate was then kept into $CO_2$ incubator at $38{\pm}1^{\circ}C$, maximum humidity and 5% $CO_2$ for 18 h. After maturation the oocytes were washed thoroughly with maturation medium containing polyvinyl alcohol (PVA) without serum and BSA and further cultured for 12 h for secretory proteins of oocytes. PVA medium was collected, pooled and concentrated by 5000 cut off centrisart. Secretory proteins were separated on 12.5% SDS-PAGE. A total number of 3.41 oocytes per ovary were obtained and 2.17 culturable oocytes per ovary were cultured into maturation medium. After 18 h of maturation, 4,567 oocytes (1.82 oocytes per ovary) were further cultured into serum and BSA free PVA medium for its secretory proteins. Four secretory proteins of oocytes with approximately molecular weight of 45, 55, 65 and 95 kDa were obtained on SDS-PAGE in silver staining and three proteins with approximately molecular weight of 45, 55 and 65 kDa in Coomassie brilliant blue staining. In conclusion, four secretory proteins with approximately molecular weight of 45, 55, 65 and 95 kDa was obtained from in vitro cultured oocytes of goats.

Different Developmental Competence of Porcine Oocytes Selected by Brilliant Cresyl Blue Staining and Polar Body Extrusion (Brilliant Cresyl Blue 염색방법과 극체 방출 여부에 따른 돼지 체외수정용 난포란 선별 방법이 배발달에 미치는 영향)

  • Kim, Yeon-Soo;Kim, Cheol-Wook;Kim, In-Cheol;Kwack, Dae-O;Chung, Ki-Hwa
    • Reproductive and Developmental Biology
    • /
    • v.33 no.1
    • /
    • pp.29-33
    • /
    • 2009
  • The brilliant cresyl blue (BCB) has been used to select the developmental competent oocytes in pigs, goats and cows. Growing oocytes have a higher level of active glucose-6-phosphate dehydrogenase(G6PDH) compare to mature oocytes and are rarely stained compared to mature oocytes, because G6PDH converts BCB to colorless. First polar body extrusion regard as a guideline of meoisis completion. Selection of polar body extrude oocyte is more developmental competent to blastocyst than unselected. This study was conducted to compare the BCB test to the polar body extrusion on selection of developmental competent porcine oocytes for the production of blastocyst. Cumulus-Oocytes complex were exposed to 26uM BCB stain diluted in NCSU-23 for 90 min. There was no significant difference embryo development to blastocysts between BCB treated and not treated($19.58{\pm}1.99$ vs $18.75{\pm}2.27%$), which means there was no detrimental effect of BCB exposure to oocytes. Normal fertilization is not differed among treatment groups from 70.0 to 78.4% development to blastocyst, beside polyspermy did not. To compare two different selection methods, BCB test and polar body extrusion, evaluate the developmental competent of IVP embryos. BCB+PB+(blue stained and polar body extruded, $20.71{\pm}0.45%$) and BCB-PB+(colorless and polar body extruded, $20.04{\pm}l.29%$) groups are significantly (p<0.05) higher developed than those of BCB+PB-(blue stained and no polar body, $13.24{\pm}0.73%$) and BCB-PB-(colorless and no poladbody, $7.25{\pm}0.77%$). These results showed that selection of polar body extruded oocytes method is more efficient than that of BCB test.

Effects of Heat Stress on the Developmental Competence of Bovine Cumulus-Oocyte Complex During in vitro Maturation (Heat Stress가 소 난자의 체외성숙과 배반포 발달에 미치는 영향)

  • Kim, Min-Su;Kim, Chan-Lan;Seong, Hwan-Hoo;Kim, Namtae;Kim, Sung Woo
    • Journal of Embryo Transfer
    • /
    • v.32 no.3
    • /
    • pp.65-71
    • /
    • 2017
  • The elevated temperature and high humidity has been known as main reason for heat stress on animals and cause detrimental effects on productivity of organisms and physiological conditions of normal bioactivities. The aims of this study were to evaluate the relationship between time of heat shock simulation during in vitro maturation and developmental competence of subsequent embryo after in vitro fertilization. Heat shocked cumulus-oocyte complexes (COCs) of Korean native cattle were subjected to normal conditions for 22, 21, 18 and 12 h respectively and transferred to heat stress inducing condition at $40.5^{\circ}C$ in other incubator for 0 (control), 1 and 4 h. After maturation for 22 h, the oocytes were fertilized and cultured in mSOF media for 8 d and examined the developmental capacity of embryos. There were no differences in maturation and cleavage rates between 0, 1 and 4 h heat socked oocytes, but blastocysts formation were lower in the 4 h heat stressed oocytes. The apoptotic cells of developed blastocysts were also increased in at day 8 with 4 h heat shocked oocytes. These results indicate that heat shock on oocytes during maturation could cause negative effects on the developmental competence of embryos.