• Title/Summary/Keyword: Cumulative fatigue damage

Search Result 115, Processing Time 0.022 seconds

Fatigue Failure Characteristics of Steel Fiber Reinforced Concrete Considering Cumulative Damage (누적손상을 고려한 강섬유보강 콘크리트의 피로파괴 특성)

  • 김동호;홍창우;이주형;이봉학
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.2
    • /
    • pp.117-126
    • /
    • 2002
  • Concrete containing discontinuous discrete steel fiber in a normal concrete is called steel fiber reinforced concrete(SFRC). Tensile as well as flexural strengths of concrete could be substantially increased by introducing closely spaced fibers which delay the onset of tension cracks and increase the tension strength of cracks. However, many properties of SFRC have not been investigated, especially properties on repeated loadings. Thus, the purposes of this dissertation is to study the flexural fatigue characteristics of SFRC considering cumulative damage. A series of experimental tests such as compressive strength, splitting tensile strength, flexural strength, flexural fatigue, and two steps stress level fatigue were conducted to clarify the basic properties and fatigue-related properties of SFRC. The main experimental variables were steel fiber fraction (0, 0.4, 0.7, 1, 1.5%), aspect ratio (60, 83). The principal results obtained through this study are as follows: The results of flexural fatigue tests showed that the flexural fatigue life of SFRC is approxmately 65% of ultimate strength, while that of plain is less than 58%. Especially, the behavior of flexural fatigue life shows excellent performance at 1.0% of steel-fiber volume fraction. The cumulative damage test of high-low two stress levels is within the value of 0.6 ∼ 1.1, while that of low-high stress steps is within the value of 2.4 ∼ 4.0.

Vibration Analysis and Durability Evaluation of a Sign Frame on a Bridge (교량부속구조물에 대한 진동해석과 피로내구성평가)

  • Lee, Sang-Hun;Endo, Takao;Ishikawa, Masami;Han, Yeon-Hee
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.317-320
    • /
    • 2008
  • Between traffic-induced vibration of a bridge and fatigue damage of its attached structures are very closely related. But any evaluation and design method considering the fatigue damage is not established yet. As an experimental method of evaluation of the fatigue durability, a method based on cumulative damage using a stress range histogram has been often used. However, to use the method, the fatigue durability of unmeasured points could not be evaluated. Then, in this paper, dynamic analysis of a sign frame on a bridge is carried out based on the vibration data of the bridge. And model optimization was performed for good agreement between measured responses and computed responses. As a result, we could get stress range histograms and calculate fatigue durability of unmeasured points.

  • PDF

A Study on the Prediction of Fatigue Life by use of Probability Density Function (확률밀도함수를 이용한 피로균열 발생수명 예측에 관한 연구)

  • 김종호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.453-461
    • /
    • 1999
  • The estimation of fatigue life at the design stage is very important in order to arrive at feasible and cost effective solutions considering the total lifetime of the structure and machinery compo-nents. In this study the practical procedure of prediction of fatigue life by use of cumulative damage factors based on Miner-Palmgren hypothesis and probability density function is shown with a $135,000m^3$ LNG tank being used as an example. In particular the parameters of Weibull distribution taht determine the stress spectrum are dis-cussed. At the end some of uncertainties associated with fatigue life prediction are discussed. The main results obtained from this study are as follows: 1. The practical procedure of prediction of fatigue life by use of cumulative damage factors expressed in combination of probability density function and S-N data is proposed. 2. The calculated fatigue life is influenced by the shape parameter and stress block. The conser-vative fatigue design can be achieved when using higher value of shape parameter and the stress blocks divded into more stress blocks.

  • PDF

Seismic assessment of steel structures through a cumulative damage

  • Perera, R.;Gomez, S.;Alarcon, E.
    • Steel and Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.283-294
    • /
    • 2001
  • In the present work a constitutive model is developed which permits the assessment of the structural performance through a criterion based on cumulative damage. For it, a damage index is defined and is evaluated through the application of the Miner's rule in low-cycle fatigue. However, the damage index is not considered as a posteriori variable since is incorporated explicitly as an internal variable in the constitutive equations which produces a direct coupling between the damage and the structural mechanical behaviour allowing the possibility of considering as a whole different coupled phenomena. For the elaboration of this damage model, the concepts of the mechanics of continuum medium are applied on lumped dissipative models in order to obtain a coupled simplified model. As a result an elastoplastic model coupled with damage and fatigue damage is obtained.

A Cumulative Damage Theory of Concrete under Variable Amplitude Fatigue Loadings (변동진폭(變動振幅)의 피로하중(疲勞荷重)을 콘크리트의 누적손상이론(累積損傷理論))

  • Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.79-88
    • /
    • 1986
  • A nonlinear cumulative damage theory, which can model the effects of the magnitude and sequence of variable amplitude fatigue loadings, is proposed. The concrete beam specimens are prepared and tested in four-point flexural loading conditions. The variable-amplitude fatigue loadings in two and three stages are considered. The present experimental study indicates that the fatigue failure of concrete is greatly influenced by the magnitude and sequence of applied, variable-amplitude fatigue loadings. It is seen that the linear damage theory proposed by Palmgren and Miner is not directly applicable to the concrete under such loading cases. The sum of the cumulative damage is found to be greater than 1 when the magnitude of fatigue loading is gradually increased and less than 1 when the magnitude of fatigue loading is gradually decreased. The proposed nonlinear damage theory, which includes the effects of the magnitude and sequence of applied fatigue loadings, allows more realistic fatigue analysis of concrete structures.

  • PDF

A study of cumulative damage of carbon steel(SM45C) welded joint by block load with p-distribution (P 분포 블록하중에 의한 용접부의 누적피노 손상에관한 연구)

  • 표동근;안태환;신광철
    • Journal of Welding and Joining
    • /
    • v.9 no.1
    • /
    • pp.40-47
    • /
    • 1991
  • The most fatigue tests carried out under the either stress or strain control, but machines and structures had taken variable stress. This variable stress was treated as statistics based on p-type distributions. In this paper, the cumulative fatigue damage of SM45C round bar specimens having a center hole resulting from block loading with p-distributions in rotating bending conditions, is presented. The value of p was changed in the range from 0.25 to 1; 0.25, 0.5, 0.75, 1. The following conclusions were obtained through the constant stress amplitude experiments and the block loading experiments. (1) In constant loading test, fatigue life was affected by cyclic rate. From experimental data, N$_{f}$ (100cpm)/N$_{f}$(3000cpm)equal to 0.56. (2) In case of the cyclic rate 100cpm and 3000cpm, at the high stress amplitude level the crack propagation life N$_{*}$f is longer than the low stress amplitude level. (3) Miner's hypothesis may be valid for p=0.75 and prediction of fatigue life by Haibach's method agree with experimental data well for the case p=0.5, while the modified Miner's method agree with experimental data well for the case p=0.25.5.

  • PDF

The Study on Fatigue Design Loads of Steel Highway Bridges (강도로교의 피로설계하중에 관한 연구)

  • Kim, Sang Hyo;Lee, Chang Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.159-169
    • /
    • 1997
  • Recently, due to the increasing overloaded heavy vehicles and traffic volumes fatigue failures of steel highway bridges frequently occur. Therefore, it is important to decide rational fatigue design procedure which can reflect lifetime cumulative fatigue damage reasonably. In this study, cumulative fatigue damages are simulated for various bridge systems and traffic conditions. The AASHTO LRFD fatigue design procedure is reviewed and the current fatigue design loading format, in which a single representative truck is loaded regardless of bridge width, is found to yield inconsistent safety level. Improved loading format with rational design load level for fatigue design is suggested.

  • PDF

Cumulative Damage Characteristics of Concrete Subjected to Variable Amplitude Loadings (반복하중을 받는 콘크리트의 누가손상 특성)

  • Byun, Keun Joo;Kim, Moon Kyum;Han, Sang Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.43-54
    • /
    • 1987
  • Cumulative damage characteristics of concrete, on which rapetitive loads are applied, are investigated. Preliminarily, a series of uniaxial compression tests on cylindrical specimens of plain concrete is carried out to find out that, among various factors, stress levels of repetitive loadings and loading order are the most governing factors of cumulative damage of concrete. Based on this preliminary study, fatigue tests are carried out applying two levels of stresses, stepwisely. As a result, it is found that characteristics of cumulative damage of concrete are governed by nonlinear relationships and do not follow Miner's linear theory. It is also observed that cumulative damage characteristics and static strengths of concrete vary with loading history of stresses. Empirical equations which may be useful in predicting fatigue characteristics and remaining life of concrete stuctures are proposed for concrete subjected two stress levels.

  • PDF

Development of Accelerated Life Test Method for Machanical Parts Using Cumulative Damage Theory (누적손상이론을 이용한 기계류부품의 가속수명시험법 개발)

  • Kim, Dae-Cheol;Lee, Geun-Ho;Kim, Hyeong-Ui
    • 연구논문집
    • /
    • s.32
    • /
    • pp.35-43
    • /
    • 2002
  • This study was performed to develop accelerated life test method of machanical parts using cumulative damage theory that used to model the fatigue of parts that receive variable load. The cumulative damage theory was introduced, and the estimation of life and calculation of accelerated life test time was illustrated. As the actual application example, accelerated life test method of agricultural tractor transmission was described. Life distribution of agricultural tractor transmission was supposed to follow Weibull distribution and life test time was calculated under the conditions of average life (MTBF) 3,000 hours and 90% reliability for one test sample. According to the cumulative damage theory, because test time can shorten in case increase test load, test time could be reduced by 482 hours when we put the load 1.1 times of rated load than 0.73 times of rated load that is equivalent load calculated by load spectrum of the agricultural tractor. This time, acceleration coefficient was 11.7. This accelerated test method was used to develop accelerated test method of gear reducer, hydraulic hose and bearing as well as agricultural tractor transmission and it is considered to be applied comprehensively to machanical parts the fatigue of which is happened by load or pressure etc.

  • PDF

A Study on the Fatigue Strength of Lap Weld of LNG Tank (LNG탱크 겹침용접부의 피로강도에 관한 연구)

  • Kim, Jong-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.29-35
    • /
    • 1999
  • At the design of Mark III membrane type LNG tank, an analytical and experimental approach on the fatigue strengths of membrane and its welds are very important in order to assist designers and surveyors. In this study, fatigue tests of lap weld of Mark III membrane type LNG tank were carried out and cumulative damage factor was calculated in order to estimate the fatigue life by probability density function and rule methods. It contained the following tests and reviews : 1) The fatigue tests of lap weld of stainless steel according to statistical testing method recommended by JSME, 2)Preparation of S-N curve for lap welds considering the statistical properties of the results of fatigue tests. 3) Procedure for estimating the initiation life of fatigue crack of lap welds under variable loads by the rule lf classification society and probability density function, 4) Guideline for inspection of lap welds fo membrane type LNG tank.

  • PDF