• Title/Summary/Keyword: Cumulative Distribution Function

Search Result 300, Processing Time 0.032 seconds

Study on Class Separability Measure for Radar Signals (레이다 신호의 클래스 분리도 측정을 위한 연구)

  • Jeong, Seong-Jae;Lee, Seung-Jae;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.2
    • /
    • pp.128-137
    • /
    • 2018
  • In this paper, we propose a novel class separability measure for radar signals. To reduce the sensitivity of the relative aspect angle between a target and radar, to evaluate the discriminatory power of radar signals, the proposed method first calculates the correlation coefficients between two radar cross sections (RCSs) or linearly shifts one-dimensional (1D) radar signals (i.e., high-resolution range profiles (HRRPs)), or rotates two 2D radar signals (i.e., inverse synthetic aperture radar (ISAR) images). Then, it uses the maximum correlation coefficient when two radar signals are best aligned. Next, the proposed method obtains new correlation-based discriminant matrices (CDM) using maximum correlation coefficients. Finally, the cumulative distribution function (CDF) in the CDM and the value corresponding to the specific probability in the CDF are obtained, and this value represents the discriminatory power of the radar signal. Experimental results show that the proposed method can accurately measure the target separability.

A study for the target water level of the dam for flood control (댐 홍수조절을 위한 목표수위 산정연구)

  • Kwak, Jaewon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.545-552
    • /
    • 2021
  • The burden of flood control on the dam under frequently flood due to climate change and especially heavy flood in 2020 year are come to the forward and increased. The objective of the study is therefore to establish the method to estimate capacity and target water level for flood control in actual dam management. Frequency matching method was applied to establish a pair of cumulative distribution function (CDF) based on daily dam inflow and discharge records. The relationship between dam storage and discharge volume represented as a percentage of inflow volume was derived and its characteristics was analyzed. As the result, the Soyanggang (45%) and Chungju Dam (39%) contributing to flood control with temporarily storing flood runoff. The method and diagram to estimate flood control capacity and target water level for flood control in the dam were established. The result of the study could be used as a supplementary data for flood control of the dam according to the rainfall prediction on the Korea Meteorological Administration.

Case study of random vibration analysis of train-bridge systems subjected to wind loads

  • Zhu, Siyu;Li, Yongle;Togbenou, Koffi;Yu, Chuanjin;Xiang, Tianyu
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.399-416
    • /
    • 2018
  • In order to reveal the independent relationship between track irregularity and wind loads, the stochastic characteristics of train-bridge coupling systems subjected to wind loads were investigated by the multi-sample calculation. The vehicle was selected as 23 degrees of freedom dynamical model, and the bridge was described by three-dimensional finite element model. It was assumed that the wind loads were random processes with strong spatial correlation, while the track irregularities were stationary random ones. As a case study, a high-speed train running on a cable-stayed bridge subjected to wind loads was studied. The effect of rail irregularities was deemed to be independent of the effect of wind excitations on the coupling system in the same wind circumstance for the same project, leading to the conclusion that the effect of wind loads and moving vehicle could be calculated separately. The variance results of the stochastic responses of vehicle-bridge coupling system under the action of wind loads and rail irregularities together were equivalent to the sum of the variance of the responses induced by each excitation. Therefore, when one of the input excitations is different, only the effect of changed loads needs to be assessed. Moreover, the new calculated results were combined with the effect of unchanged loads to present the stochastic response of coupling system subjected to the different excitations, reducing the cost of computations. The stochastic characteristics, the CFD (cumulative distribution function) of the coupling system with different wind velocities, vehicle speed, and vehicle marshalling were studied likewise.

Enhancing Medium-Range Forecast Accuracy of Temperature and Relative Humidity over South Korea using Minimum Continuous Ranked Probability Score (CRPS) Statistical Correction Technique (연속 순위 확률 점수를 활용한 통합 앙상블 모델에 대한 기온 및 습도 후처리 모델 개발)

  • Hyejeong Bok;Junsu Kim;Yeon-Hee Kim;Eunju Cho;Seungbum Kim
    • Atmosphere
    • /
    • v.34 no.1
    • /
    • pp.23-34
    • /
    • 2024
  • The Korea Meteorological Administration has improved medium-range weather forecasts by implementing post-processing methods to minimize numerical model errors. In this study, we employ a statistical correction technique known as the minimum continuous ranked probability score (CRPS) to refine medium-range forecast guidance. This technique quantifies the similarity between the predicted values and the observed cumulative distribution function of the Unified Model Ensemble Prediction System for Global (UM EPSG). We evaluated the performance of the medium-range forecast guidance for surface air temperature and relative humidity, noting significant enhancements in seasonal bias and root mean squared error compared to observations. Notably, compared to the existing the medium-range forecast guidance, temperature forecasts exhibit 17.5% improvement in summer and 21.5% improvement in winter. Humidity forecasts also show 12% improvement in summer and 23% improvement in winter. The results indicate that utilizing the minimum CRPS for medium-range forecast guidance provide more reliable and improved performance than UM EPSG.

Application of Indicator Geostatistics for Probabilistic Uncertainty and Risk Analyses of Geochemical Data (지화학 자료의 확률론적 불확실성 및 위험성 분석을 위한 지시자 지구통계학의 응용)

  • Park, No-Wook
    • Journal of the Korean earth science society
    • /
    • v.31 no.4
    • /
    • pp.301-312
    • /
    • 2010
  • Geochemical data have been regarded as one of the important environmental variables in the environmental management. Since they are often sampled at sparse locations, it is important not only to predict attribute values at unsampled locations, but also to assess the uncertainty attached to the prediction for further analysis. The main objective of this paper is to exemplify how indicator geostatistics can be effectively applied to geochemical data processing for providing decision-supporting information as well as spatial distribution of the geochemical data. A whole geostatistical analysis framework, which includes probabilistic uncertainty modeling, classification and risk analysis, was illustrated through a case study of cadmium mapping. A conditional cumulative distribution function (ccdf) was first modeled by indicator kriging, and then e-type estimates and conditional variance were computed for spatial distribution of cadmium and quantitative uncertainty measures, respectively. Two different classification criteria such as a probability thresholding and an attribute thresholding were applied to delineate contaminated and safe areas. Finally, additional sampling locations were extracted from the coefficient of variation that accounts for both the conditional variance and the difference between attribute values and thresholding values. It is suggested that the indicator geostatistical framework illustrated in this study be a useful tool for analyzing any environmental variables including geochemical data for decision-making in the presence of uncertainty.

A Comparison Study on Severe Accident Risks Between PWR and PHWR Plants (가압 경수로 및 가압중수로형 원자력 발전소의 중대사고 리스크 비교 평가)

  • Jeong, Jong-Tae;Kim, Tae-Woon;Ha, Jae-Joo
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.3
    • /
    • pp.187-196
    • /
    • 2004
  • The health effects resulting from severe accidents of typical 1,000MWe KSNP(Korea Standard Nuclear Plant) PWR and typical 600MWe CANDU(CANada Deuterium Uranium) plants were estimated and compared. The population distribution of the site extending to 80km for both site were considered. The releaese fraction for various source term categories(STC) and core inventories were used in the estimation of the health effects risks by using the MACCS2(MELCOR Accident Consequence Code System2) code. Individuals are assumed to evacuate beyond 16km from the site. The health effects considered in this comparative study are early and cancer fatality risk, and the results are presented as CCDF(Complementary Cumulative Distribution Function) curves considering the occurrence probability of each STC's. According to the results, the early and cancer fatality risks of PHWR plants we lower than those of PWR plants. This is attributed the fact that the amount of radioactive mateials that released to the atmosphere resulting from the postulated severe accidents of PHWR plants are smaller than that of PWR plants. And, the dominating initiating event of STC that shows maximum early and cancer fatality risk is SGTR(Steam Generator Tube Rupture) for both plants. Therefore, the appropriated actions must be taken to reduce the occurrence probability and the amounts of radioactive materials released to the environment in order to protect the public for both PWR and PHWR plants.

An Assessment of Applicability of Heat Waves Using Extreme Forecast Index in KMA Climate Prediction System (GloSea5) (기상청 현업 기후예측시스템(GloSea5)에서의 극한예측지수를 이용한 여름철 폭염 예측 성능 평가)

  • Heo, Sol-Ip;Hyun, Yu-Kyung;Ryu, Young;Kang, Hyun-Suk;Lim, Yoon-Jin;Kim, Yoonjae
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.257-267
    • /
    • 2019
  • This study is to assess the applicability of the Extreme Forecast Index (EFI) algorithm of the ECMWF seasonal forecast system to the Global Seasonal Forecasting System version 5 (GloSea5), operational seasonal forecast system of the Korea Meteorological Administration (KMA). The EFI is based on the difference between Cumulative Distribution Function (CDF) curves of the model's climate data and the current ensemble forecast distribution, which is essential to diagnose the predictability in the extreme cases. To investigate its applicability, the experiment was conducted during the heat-wave cases (the year of 1994 and 2003) and compared GloSea5 hindcast data based EFI with anomaly data of ERA-Interim. The data also used to determine quantitative estimates of Probability Of Detection (POD), False Alarm Ratio (FAR), and spatial pattern correlation. The results showed that the area of ERA-Interim indicating above 4-degree temperature corresponded to the area of EFI 0.8 and above. POD showed high ratio (0.7 and 0.9, respectively), when ERA-Interim anomaly data were the highest (on Jul. 11, 1994 (> $5^{\circ}C$) and Aug. 8, 2003 (> $7^{\circ}C$), respectively). The spatial pattern showed a high correlation in the range of 0.5~0.9. However, the correlation decreased as the lead time increased. Furthermore, the case of Korea heat wave in 2018 was conducted using GloSea5 forecast data to validate EFI showed successful prediction for two to three weeks lead time. As a result, the EFI forecasts can be used to predict the probability that an extreme weather event of interest might occur. Overall, we expected these results to be available for extreme weather forecasting.

An attitude survey on the safety of the household utilities with the urban gas (설문에 의한 도시가스 사용가구의 안전의식도 조사)

  • Ko Jae-Sun;Kim Hyo;Lee SuKyoung
    • 한국가스학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.37-43
    • /
    • 2005
  • The questionnaires about the safety of the urban gas have been carried out for the end users. about 8 of 10 persons said that the urban gas Is safe to use, whereas $35\%$ of them said there exists a hazard of an accident in thier residences. There cannot be found the clear evidences that the understandings on the safety of the urban gas have no relations to their ages, sex, and monthly incomes, while the safety is less confidential to the highly educated, the accident-experienced, or the mans who are poor at the safety inspections. Most of the questioned man know the inspection knacks for the gas utilities, but only $60\%$ of them carry out it. They said that they do not feel the necessity of the inspection because they are inspected routinely by the suppliers or the inspection companies. This says that the end user does not concern the safety inspections, and in order to improve the dependency of the user for the self-inspections, the inspection staff should educate the user for the necessity and the knack of inspections to encourage the self-inspection of the gas utilities.

  • PDF

Annual Loss Probability Estimation of Steel Moment-Resisting Frames(SMRFs) using Seismic Fragility Analysis (지진취약도를 통한 철골모멘트골조의 연간 손실 평가)

  • Jun, Saemee;Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.517-524
    • /
    • 2014
  • The ultimate goal of seismic design is to reduce the probable losses or damages occurred during an expected earthquake event. To achieve this goal, this study represents a procedure that can estimate annual loss probability of a structure damaged by strong ground motion. First of all, probabilistic seismic performance assessment should be performed using seismic fragility analyses that are presented by a cumulative distribution function of the probability in each exceedance structural damage state. A seismic hazard curve is then derived from an annual frequency of exccedance per each ground motion intensity. An annual loss probability function is combined with seismic fragility analysis results and seismic hazard curves. In this paper, annual loss probabilities are estimated by the structural fragility curve of steel moment-resisting frames(SMRFs) in San Francisco Bay, USA, and are compared with loss estimation results obtained from the HAZUS methodology. It is investigated from the comparison that seismic losses of the SMRFs calculated from the HAZUS method are conservatively estimated. The procedure presented in this study could be effectively used for future studies related with structural seismic performance assessment and annual loss probability estimation.

Optimal Seismic Rehabilitation of Structures Using Probabilistic Seismic Demand Model (확률적 지진요구모델을 이용한 구조물의 최적 내진보강)

  • Park, Joo-Nam;Choi, Eun-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.1-10
    • /
    • 2008
  • The seismic performance of a structure designed without consideration of seismic loading can be effectively enhanced through seismic rehabilitation. The appropriate level of rehabilitation should be determined based on the decision criteria that minimize the anticipated earthquake-related losses. To estimate the anticipated losses, seismic risk analysis should be performed considering the probabilistic characteristics of the hazard and the structural damage. This study presents the decision procedure in which the probabilistic seismic demand model is utilized for the effective estimation and minimization of the total seismic losses through seismic rehabilitation. The probability density function and the cumulative distribution function of the structural damage for a specified time period are established in a closed form, and are combined with the loss functions to derive the expected seismic loss. The procedure presented in this study could be effectively used for making decisions on the seismic rehabilitation of structural systems.