• 제목/요약/키워드: Cumulative Damage Model

검색결과 92건 처리시간 0.02초

Experimental and numerical studies on seismic performance of hollow RC bridge columns

  • Han, Qiang;Zhou, Yulong;Du, Xiuli;Huang, Chao;Lee, George C.
    • Earthquakes and Structures
    • /
    • 제7권3호
    • /
    • pp.251-269
    • /
    • 2014
  • To investigate the seismic performance and to obtain quantitative parameters for the requirement of performance-based bridge seismic design approach, 12 reinforced concrete (RC) hollow rectangular bridge column specimens were tested under constant axial load and cyclic bending. Parametric study is carried out on axial load ratio, aspect ratio, longitudinal reinforcement ratio and transverse reinforcement ratio. The damage states of these column specimens were related to engineering limit states to determine the quantitative criteria of performance-based bridge seismic design. The hysteretic behavior of bridge column specimens was simulated based on the fiber model in OpenSees program and the results of the force-displacement hysteretic curves were well agreed with the experimental results. The damage states of residual cracking, cover spalling, and core crushing could be well related to engineering limit states, such as longitudinal tensile strains of reinforcement or compressive strains of concrete, etc. using cumulative probability curves. The ductility coefficient varying from 3.71 to 8.29, and the equivalent viscous damping ratio varying from 0.19 to 0.31 could meet the requirements of seismic design.

A numerical application of Bayesian optimization to the condition assessment of bridge hangers

  • X.W. Ye;Y. Ding;P.H. Ni
    • Smart Structures and Systems
    • /
    • 제31권1호
    • /
    • pp.57-68
    • /
    • 2023
  • Bridge hangers, such as those in suspension and cable-stayed bridges, suffer from cumulative fatigue damage caused by dynamic loads (e.g., cyclic traffic and wind loads) in their service condition. Thus, the identification of damage to hangers is important in preserving the service life of the bridge structure. This study develops a new method for condition assessment of bridge hangers. The tension force of the bridge and the damages in the element level can be identified using the Bayesian optimization method. To improve the number of observed data, the additional mass method is combined the Bayesian optimization method. Numerical studies are presented to verify the accuracy and efficiency of the proposed method. The influence of different acquisition functions, which include expected improvement (EI), probability-of-improvement (PI), lower confidence bound (LCB), and expected improvement per second (EIPC), on the identification of damage to the bridge hanger is studied. Results show that the errors identified by the EI acquisition function are smaller than those identified by the other acquisition functions. The identification of the damage to the bridge hanger with various types of boundary conditions and different levels of measurement noise are also studied. Results show that both the severity of the damage and the tension force can be identified via the proposed method, thereby verifying the robustness of the proposed method. Compared to the genetic algorithm (GA), particle swarm optimization (PSO), and nonlinear least-square method (NLS), the Bayesian optimization (BO) performs best in identifying the structural damage and tension force.

Virtual Qualification을 통한 자동차용 전장부품의 수명 평가 (Life Assessment of Automotive Electronic Part using Virtual Qualification)

  • 이해진;이정윤;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.143-146
    • /
    • 2005
  • In modern automotive control modules, mechanical failures of surface mounted electronic components such as microprocessors, crystals, capacitors, transformers, inductors, and ball grid array packages, etc., are mai or roadblocks to design cycle time and product reliability. This paper presents a general methodology of failure analysis and fatigue prediction of these electronic components under automotive vibration environments. Mechanical performance of these packages is studied through finite element modeling approach fur given vibration environments in automotive application. Using the results of vibration simulation, fatigue lift is predicted based on cumulative damage analysis and material durability information. Detailed model of solder/lead joints is built to correlate the system level model and obtain solder strains/stresses. The primary focus in this paper is on surface-mount interconnect fatigue failures and the critical component selected for this analysis is 80 pin plastic leaded microprocessor.

  • PDF

누적절대속도 개념을 고려한 지진손상표시기의 실험적 연구 (An Experimental Study on Seismic Damage Indicator Considering Cumulative Absolute Velocity Concept)

  • 이종림;권기주;이상훈
    • 한국지진공학회논문집
    • /
    • 제5권3호
    • /
    • pp.65-71
    • /
    • 2001
  • 원자력발전소(원전)는 운전기준지진(OBE) 초과지진 발생시 안전성 검사와 시험을 위하여 운전을 정지하여야 하는데, 계측된 지진기록의 누적절대속도(CAV)계산 값이 0.16g-sec를 초과하고 OBE 응답스펙트럼을 초과하면 OBE를 초과한 것으로 고려하게 된다. 이 CAV 기준은 발전소의 지진 특성과 구조물의 특성에 따라 다르므로, 발전소에 적합한 CAV 기준을 설정하여야 한다. 국내 원전에 적합한 CAV 기준 값을 설정하기 위하여, 각 방향에서의 지진하중에 일관되게 반응하도록 고안한 원통모양의 아크릴 봉을 조립한 지진손상표시기(SDI)를 제작, 진동대 시험을 통하여 지진의 세기를 평가하고 국내 원전 내진설계에 적용된 CAV값을 계산한 결과0.3~0.5g-sec으로 나타나 OBE 초과기준으로 CAV기준 값(0.16g-sec)의 적용은 충분히 보수적인 값으로 나타났다. 본 연구를 통하여 개발된 SDI는 발전소 운전원이 OBE 초과 여부를 판단하는데 도움을 줄 수 있을 뿐만 아니라 운전 정지 후 원전의 지진 피해도를 정량적으로 판단하여 조치를 취하는 도구로 활용될 수 있을 것이다.

  • PDF

Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part I: Model test

  • Li, Z.R.;Li, Z.C.;Dong, Z.F.;Huang, T.;Lu, Y.G.;Rong, J.L.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.3068-3084
    • /
    • 2021
  • Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to experimentally assess the damage and vibrations of NPP buildings subjected to aircraft crash. In present Part I, two shots of reduce-scaled model test of aircraft impacting on NPP building were carried out. Firstly, the 1:15 aircraft model (weighs 135 kg) and RC NPP model (weighs about 70 t) are designed and prepared. Then, based on the large rocket sled loading test platform, the aircraft models were accelerated to impact perpendicularly on the two sides of NPP model, i.e., containment and auxiliary buildings, with a velocity of about 170 m/s. The strain-time histories of rebars within the impact area and acceleration-time histories of each floor of NPP model are derived from the pre-arranged twenty-one strain gauges and twenty tri-axial accelerometers, and the whole impact processes were recorded by three high-speed cameras. The local penetration and perforation failure modes occurred respectively in the collision scenarios of containment and auxiliary buildings, and some suggestions for the NPP design are given. The maximum acceleration in the 1:15 scaled tests is 1785.73 g, and thus the corresponding maximum resultant acceleration in a prototype impact might be about 119 g, which poses a potential threat to the nuclear equipment. Furthermore, it was found that the nonlinear decrease of vibrations along the height was well reflected by the variations of both the maximum resultant vibrations and Cumulative Absolute Velocity (CAV). The present experimental work on the damage and dynamic responses of NPP structure under aircraft impact is firstly presented, which could provide a benchmark basis for further safety assessments of prototype NPP structure as well as inner systems and components against aircraft crash.

Strain-based seismic failure evaluation of coupled dam-reservoir-foundation system

  • Hariri-Ardebili, M.A.;Mirzabozorg, H.;Ghasemi, A.
    • Coupled systems mechanics
    • /
    • 제2권1호
    • /
    • pp.85-110
    • /
    • 2013
  • Generally, mass concrete structural behavior is governed by the strain components. However, relevant guidelines in dam engineering evaluate the structural behavior of concrete dams using stress-based criteria. In the present study, strain-based criteria are proposed for the first time in a professional manner and their applicability in seismic failure evaluation of an arch dam are investigated. Numerical model of the dam is provided using NSAD-DRI finite element code and the foundation is modeled to be massed using infinite elements at its far-end boundaries. The coupled dam-reservoir-foundation system is solved in Lagrangian-Eulerian domain using Newmark-${\beta}$ time integration method. Seismic performance of the dam is investigated using parameters such as the demand-capacity ratio, the cumulative inelastic duration and the extension of the overstressed/overstrained areas. Real crack profile of the dam based on the damage mechanics approach is compared with those obtained from stress-based and strain-based approaches. It is found that using stress-based criteria leads to conservative results for arch action while seismic safety evaluation using the proposed strain-based criteria leads to conservative cantilever action.

태풍에 의한 경사식 방파제의 피복재 침식 피해 산정 (Estimation of Erosion Damage of Armor Units of Rubble Mound Breakwaters Attacked by Typhoons)

  • 김승우;서경덕
    • 한국해안·해양공학회논문집
    • /
    • 제22권5호
    • /
    • pp.295-305
    • /
    • 2010
  • 국내 경사식 방파제는 거의 매년 태풍 피해를 지속적으로 입고 있지만 피복블록의 침식피해를 정량적으로 분석한 사례가 드물다. 본 논문에서는 피복블록의 침식을 상대피해로 표준화하여 나타내었다. 블록의 이탈 개수가 조사된 경우에는 이를 블록의 전체 개수로 나누어 상대피해를 계산하였으며, 피해 복구 비용이 조사된 경우에는 현재 가치로 환산한 복구 비용과 상대피해의 관계를 이용하여 상대피해를 산정하였다. 상대 피해는 태풍 매개변수인 중심기압 및 최대풍속과 지역별로 뚜렷한 상관관계를 보였다. 또한 기존 누적 피해 계산 방법 중에서 합리적 방법을 선정하기 위해 수리모형 실험결과와 두 가지 수치 모의 방법을 비교하였다. 본 연구에서 Melby and Kobayashi (1998) 방법이 합리적임을 증명하였고 이 방법으로 계산된 상대피해를 관측된 상대피해와 비교하였다. 여수항 동방파제에서 관측된 상대피해와 수치 모의 결과는 잘 일치하지만 나머지 방파제에서는 상당한 차이를 보였다. 이는 기후변화에 따른 태풍 강도의 증가로 방파제의 설계파고보다 큰 파고가 사용년수 동안에 발생하여 실제 상대피해가 증가된 것으로 추정된다.

선박용 압축공기 탱크의 피로강도에 관한 연구(I) (A Study on the Fatigue Strength of Compressed Air Tank for Ships(I))

  • 김종호;안재형
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권8호
    • /
    • pp.923-928
    • /
    • 2005
  • The estimation of fatigue life at the design stage of the compressed air tank on board is very important in order to arrive at feasible and reliable solutions considering the total lifetime of the tank. In this paper the compressed air tank on board was selected as a model and the change of inside pressure of the tank during normal navigation period was measured and the cycle of fluctuation stress was presumed statistically based on this. Also the effect of stress concentration with the FEM analysis on the longitudinal weld and the mean stress effect on the fatigue strength of compressed air tank were discussed.

개착식 철도 터널 구조물의 기존 지진취약도 모델 적합성 평가 (Evaluation of seismic fragility models for cut-and-cover railway tunnels)

  • 양승훈;곽동엽
    • 한국터널지하공간학회 논문집
    • /
    • 제24권1호
    • /
    • pp.1-13
    • /
    • 2022
  • 본 연구에서는 기존에 개발된 개착식 철도 터널의 지진취약도 모델들을 가중 조합하여 새로운 모델을 제시하고 제시한 모델의 적정성을 평가하였다. 지진취약도 함수의 형태는 최대지반가속도의 대수정규분포형태로, 누적확률분포로 표현된다. 독립적으로 개발된 각 모델을 선형 가중 조합하는 것으로 모델의 불확실성을 줄일 수 있기에 4개의 모델에 대하여 25%씩 동등하게 선형가중을 부여하였다. 조합된 지진취약도 곡선에 최대 지반가속도에 대한 피해발생확률을 이용하여 지진취약도 곡선의 중앙값과 표준편차를 결정하여 새로운 지진취약도 함수를 개발하였다. 개발된 지진취약도 함수의 적합성을 평가하기 위하여 다양한 터널의 지진취약도 곡선과 비교 분석을 진행하였다. 개발된 곡선은 상대적으로 지진피해에 안전한 굴착식 터널의 지진취약도 함수와 비슷한 취약도를 갖는 것으로 나타나는데, 대상 터널은 국내 고속철도 개착식 터널로 높은 내진설계 기준에 의해 기인하는 것으로 판단된다.

침식 해석을 이용한 월 블로워 노즐의 성능 예측 (Performance Evaluation of Wall Blower Nozzle using Erosion Analysis)

  • 백재호;장일광;장용훈
    • Tribology and Lubricants
    • /
    • 제34권5호
    • /
    • pp.175-182
    • /
    • 2018
  • Accumulation of coal ash at the boiler wall reduces combustion and fuel efficiency. The design of a wall blower is important to effectively remove coal ash. We present numerical results for the removal of coal ash from boiler walls of domestic coal-fired power plants, associated with the computational fluid dynamics for the flow from spray nozzle to boiler wall. The numerical model simulates an erosion process in which the multiphase fluid comprising saturated vapor and fluid water is sprayed from the nozzle, and the water particles impact the boiler wall. We adopt the Finnie erosion model for water particles. We obtain the erosion rate density as a function of nozzle angle and its injection angle. As excessive coal ash removal usually induces damage to the boiler wall, the removal operation typically focuses on a large area with uniform depth rather than the maximum removal of coal ash at a specific location. In order to estimate the removal performance of the wall blower nozzle considering several functionality and reliability factors, we evaluate the optimal injection and nozzle angles with respect to the biggest cumulative and highest erosion rates, as well as the widest range and lowest standard deviation of the erosion rate distribution.