• Title/Summary/Keyword: Cumulative Damage Evaluation Method

Search Result 26, Processing Time 0.017 seconds

Seismic damage evaluation of steel reinforced recycled concrete filled circular steel tube composite columns

  • Hui, Ma;Xiyang, Liu;Yunchong, Chen;Yanli, Zhao
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.445-462
    • /
    • 2022
  • To investigate and evaluate the seismic damage behaviors of steel reinforced recycled concrete (SRRC) filled circular steel tube composite columns, in this study, the cyclic loading tests of 11 composite columns was carried out by using the load-displacement joint control method. The seismic damage process, hysteretic curves and performance indexes of composite columns were observed and obtained. The effects of replacement rates of recycled coarse aggregate (RCA), diameter thickness ratio, axial compression ratio, profile steel ratio and section form of profile steel on the seismic damage behaviors of composite columns were also analyzed in detail. The results show that the failure model of columns is a typical bending failure under the combined action of horizontal loads and vertical loads, and the columns have good energy dissipation capacity and ductility. In addition, the replacement rates of RCA have a certain adverse effect on the seismic bearing capacity, energy consumption and ductility of columns. The seismic damage characteristics of composite columns are revealed according to the failure modes and hysteretic curves. A modified Park-Ang seismic damage model based on the maximum displacement and cumulative energy consumption was proposed, which can consider the adverse effect of RAC on the seismic damage of columns. On this basis, the performance levels of composite columns are divided into five categories, The interlayer displacement angle and damage index are used as the damage quantitative indicators of composite columns, and the displacement angle limits of composite columns at different performance levels under 80% assurance rate are calculated as 1/105, 1/85, 1/65, 1/28, and 1/25 respectively. On this basis, the damage index limits corresponding to each performance level are calculated as 0.045, 0.1, 0.48, 0.8, and 1.0 respectively. Finally, the corresponding relations among the performance levels, damage degrees, interlayer displacement angles and damage indexes of composite columns are established. The conclusions can provide reference for the seismic design of SRRC filled circular steel tube composite columns, it fills the vacancy in the research on seismic damage of steel reinforced recycled concrete (SRRC) filled circular steel tube composite columns.

Remaining Fatigue Life Evaluation of Steel Railroad Bridge (강철도교의 잔존피로수명 평가)

  • Kim, Sang Hyo;Lee, Sang Woo;Mha, Ho Seong;Kim, Jong Hak
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.329-338
    • /
    • 1999
  • A systematic procedure to evaluate fatigue damages and to predict remaining fatigue lives is introduced for a steel railway bridge. Fatigue damages are evaluated by using the currently available fatigue damage theory. Fatigue lives with the condition of fatigue crack initiation are estimated by the probabilistic approach based on the reliability theory as well as the simplified procedure. A equivalent deterministic procedure is also suggested to assess the remaining fatigue life under various traffic conditions. Numerical simulations are used to assess dynamic stress histories with correction factors. Loading models are obtained from the passenger volume data. Train coincidences are also considered. Based on the results, the fatigue life is found to be underestimated by without considering the coincidence of trains on the bridge. The simplified method proposed in this study are found to yield approximately the same results as the systematic procedure.

  • PDF

Vibration Fatigue Life for Slot Array RF Antenna Applied to Small Aviation Platform (적층제조 공법이 적용된 소형 항공 플랫폼용 슬롯 배열 초고주파 안테나의 진동피로수명평가에 대한 연구)

  • Kim, Ki-Seung;Kim, Hyo-Tae;Choi, Hye-Yoon;Jung, Hwa-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • Sensors are applied to small aviation platforms for various purposes. Radio frequency (RF) antennas, which are representative sensors, are available in many forms but require the application of slot array RF antennas to ensure high performance and designation. Slot RF array antennas are applied to dip brazing techniques, but the yield and production time are determined by the proficiency of production personnel in a labor-intensive form. Unmanned aerial vehicles or drones, which are representative small aviation platforms, are continuously exposed to various random vibrations because propellers and multiple power sources are used in them. In this study, the fatigue life of slot array RF antennas applied with additive manufacturing was evaluated through the cumulative damage method (Miner's rule) in a vibration environment with a small aviation platform. For the evaluation, an S N curve obtained from a fatigue strength test was used.

Procedural steps for reliability evaluation of ultrasonically welded REBCO coated conductor lap-joints under low cycle fatigue test condition

  • Michael De Leon;Mark Angelo Diaz;Hyung-Seop Shin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.28-31
    • /
    • 2023
  • This study presents a comprehensive procedure for the low cycle fatigue test of ultrasonically welded (UW) coated conductor (CC) lap-joints. The entire process is examined in detail, from the robust fabrication of the UW REBCO CC joints to the reliability testing under a low number of repeated cycle fatigue conditions. A continuous Ic measurement system enables real-time monitoring of Ic variations throughout the fatigue tests. The study aims to provide a step-by-step procedure that involves joint fabrication, electromechanical property (EMP) tests under uniaxial tension for stress level determination, and subsequent low-cycle fatigue tests. The joints are fabricated using a hybrid method that combines UW with adding In-Sn soldering, achieving a flux-free hybrid welding approach (UW-HW flux-free). The selected conditions for the low cycle fatigue tests include a stress ratio of R=0.1 and a frequency of 0.02 Hz. The results reveal some insights into the fatigue behavior, irreversible changes, and cumulative damage in the CC joints.

Evaluation of seismic fragility models for cut-and-cover railway tunnels (개착식 철도 터널 구조물의 기존 지진취약도 모델 적합성 평가)

  • Yang, Seunghoon;Kwak, Dongyoup
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • A weighted linear combination of seismic fragility models previously developed for cut-and-cover railway tunnels was presented and the appropriateness of the combined model was evaluated. The seismic fragility function is expressed in the form of a cumulative probability function of the lognormal distribution based on the peak ground acceleration. The model uncertainty can be reduced by combining models independently developed. Equal weight is applied to four models. The new seismic fragility function was developed for each damage level by determining the median and standard deviation, which are model metrics. Comparing fragility curves developed for other bored tunnels, cut-and-cover tunnels for high-speed railway system have a similar level of fragility. We postulated that this is due to the high seismic design standard for high-speed railway tunnel.

Accuracy evaluation of 2D inundation analysis results of simplified SWMM according to sewer network scale (하수관망 규모에 따른 단순화 SWMM에 대한 2차원 침수분석결과의 정확성 평가)

  • Lee, Jung-Hwan;Kang, Seong-gyu;Yuk, Gi-Moon;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.8
    • /
    • pp.531-543
    • /
    • 2019
  • Constructing a reliable runoff model and reducing model runtime are important in research of real-time urban flood forecasting to reduce the repetitive flood damage. Sewer networks in the major urban basin such as Seoul are vast and complex so that it is not suitable for real-time urban flood forecasting. Therefore, the rainfall-runoff model should be simplified. However, the runoff results due to the simplification of sewer networks can vary depending on the subjectivity and simplification method of the researcher and there is a significant difference especially in 2-D inundation analysis. In this study, the sewer networks in various urban basins with different numbers and distributions of sewer networks were simplified to certain criteria. The accuracy of the simplification model according to the sewer network scale is evaluated by 2-D inundation analysis. The runoff models of Gwanak, Sillim, and Dorimcheon, frequently inundated basins were simplified based on four simplification ranges due to the cumulative drainage area set as a criterion for calculating the simplification range. This study will be expected that the inundation result of simplification models estimated through the analysis can contribute to the construction of a reasonable and accurate runoff model suitable for real-time flood forecasting.