• Title/Summary/Keyword: Cultivation with heating

Search Result 73, Processing Time 0.019 seconds

Analysis of Heat Transfer Characteristics in Soil for Development of a Geothermal Heat Exchange System (지열 열교환시스템 개발을 위한 지중 열유동 특성분석)

  • Lee Y. B.;Cho S. I.;Kang C. H.;Jung I. K.;Lee C. G.;Sung J. H.;Chung S. O.;Kim Y. B.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.3 s.110
    • /
    • pp.185-191
    • /
    • 2005
  • Importance of alternative energy has been increasing due to environmental issues and lack of fossil fuels. In addition, heating cost that occupies from 30 to $40\%$ of the total production cost in the protected cultivation sector in Korea needs to be reduced for profitability and global competition. But, study on geothermal energy to solve these problems has not been activated for Korean protected cultivation. This study was conducted to develop an optimized geothermal exchange system through fundamental test of heat transfer characteristics in soil such as thermal diffusivity, changes in soil temperature during heating and cooling operations, and restorations of soil temperature after the heater was fumed off, These issues were investigated using computer simulation for different depths. The simulated characteristics were evaluated through controlled tests. Simulated characteristics of heat transfer in the soil at different depths showed a reasonable agreement with the results of the controlled tests. All of computer simulation and controlled tests, soil temperatures changed at 10cm and 20cm distance from pipe. but don't change at more than 30cm distance. It means that distances of heat transfer of the soil ranged from 20 to 30cm a day. Based on these results, the optimum spacing between adjacent heat exchange pipes and the pitch were selected as 50 and 40cm, respectively.

Climate Change Impacts on Optimum Ripening Periods of Rice Plant and Its Countermeasure in Rice Cultivation (기후변화에 따른 벼 적정 등숙기간의 변동과 대책)

  • 윤성호;이정택
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.1
    • /
    • pp.55-70
    • /
    • 2001
  • It was unusual crop weather for 1998 and 1999 compared with normal in Korea. The consecutive days of the optimum ripening period for rice plant that had daily mean temperature 21~23$^{\circ}C$ for 40 days after flowering, increased with long anomalies in 1998~99. The air temperature during ripening period was much higher than the optimum temperature and lower sunshine hour than norm in the local adaptability tests of newly developed rice lines during those years. In response of rice cultivation to warming and cloudy weather during crop season, the yield shall be decreased. Most scientists agree that the rate of heating is accelerating and temperature change could become increasingly disruptive. Weather patterns should also become more erratic. Agrometeorologists could be analyzed yearly variations of temperature, sunshine hour and rainfall pattern focused on transient agroclimate change for last a decade. Rice agronomists could be established taking advantage of real time agricultural meteorology information system for fertilization, irrigation, pest control and harvest. Also they could be analyzed the characteristics of flowering response of the recommended and newly bred rice cultivars for suitable cropping plan such as cultural patterns and sowing or transplanting date. Rice breeders should be deeply considered introducing the characteristics of basic vegetative type of flowering response like Togil rices as prospective rice cultivars corresponding to global warming because of the rices needed higher temperature at ripening stage than japonica rices, photoperiod-sensitive and thermo-sensitive ecotypes.

  • PDF

Analysis of Environment Factors in Pleurotus eryngii Cultivation House of Permanent Frame Type Structure (영구형 큰느타리버섯 재배사의 환경요인 분석)

  • Yoon Yong-Cheol;Suh Won-Myung;Lee In-Bok
    • Journal of Bio-Environment Control
    • /
    • v.15 no.2
    • /
    • pp.125-137
    • /
    • 2006
  • Pleurotus eryngii is one of the most promising mushrooms produced on the domestic farms. The quality as well as quantity of Eryngii is sensitively affected by micro climate factors such as temperature, relative humidity, $CO_2$ concentration, and light intensity. To safely produce high-quality Eryngii all the yew round, it is required that the environmental factors be carefully controlled by well designed structures equipped with various facilities and control systems. At the commercial mushroom cultivation houses of permanent frame type (A, B), this study was carried out to find out reasonable range of each environmental factor and yield together with economic and safe structures influencing on the optimal productivity of Eryngii. This experiment was conducted for about two-year ken Nov. 2003 to Dec. 2005 in cultivation house. Ambient temperature during the experiment period was not predominantly different from that of a normal year. The capacity of the hot water boiler and the piping systems were not enough. Because the capacity of electric heater and air circulation were not enough, air temperatures in cultivation house before improvement of system were maintained somewhat lower than setting temperature, and maximum air temperature difference between the upper and lower growth stage during a heating time period was about 5.1. But the air temperatures after system improvement were maintained within the limits range of setting temperature without happening stagnant of air. Air temperature distribution was generally distributed uniform. Relative humidity in cultivation house before , improvement was widely ranged about $44{\sim}100%$. But as the relative humidity after improvement was ranged approximately $80{\sim}100%$, it was maintained within the range of relative humidity recommended. And $CO_2$ concentration was maintained about $400{\sim}3,300mg{\cdot}L^{-1}$ range. The illuminance in cultivation house was widely distributed in accordance with position, and it was maintained lower than the recommended illuminance range $100{\sim}200lx$. The acidity of midium was some lower range than the recommend acidity range of pH $5.5{\sim}6.5$. The yield was relatively ununiform. In case of bottle capacity of 1,300cc, the mushroom of the lowest grade was less than 3%. The consumption electric energy was quite different according to the cultivation season. The electric energy consumed during heating season was much more than that of cooling season.

Analysis of the Structural Safety in a Non-heating Greenhouse with a Single Cover for Citrus Cultivation in Jeju (제주지역 감귤재배용 단일피복 무가온하우스의 구조안전성 분석)

  • Yum Sung Hyun;Kim Hak Joo;Chun Hee;Lee Si Young;Kang Yun Im;Kim Young Hyo;Kim Yong Ho
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.166-173
    • /
    • 2005
  • This study was carried out to evaluate the structural stability in a non-heating greenhouse with a single cover for Citrus cultivation which was built up in Jeju on the basis of the drawing designed by Jejudo Agricultural Research & Extension Services and also to make use of the data for developing a standardized non-heating greenhouse in Jeju. The analysis of a structural stability was conducted by using CFX-5.7 and ANSYS under the design condition of a maximum accumulated snow-depth of 19.1 cm as well as an instantaneous maximum wind velocity of $36.6\;m{\cdot}s^{-1}$ which was set up on the basis of meteorological statistics in Jeju. As a result, the maximum von-Mises stress applied on pipes under the wind velocity of $36.6\;m{\cdot}s^{-1}$ showed a value of $250\;N{\cdot}mm^{-2}$ which was greater than the allowable stress of the pipe with a value of $235.4\;N{\cdot}mm^{-2}$ (=$2,400\;kg{\cdot}cm^{-2}$) and also $53.8\;N{\cdot}mm^{-2}$ under the snow-depth of 19.1 cm, respectively. This result suggested that the greenhouse be unstable under the design condition of an instantaneous wind velocity of $36.6\;m{\cdot}s^{-1}$ so that it was necessary for the greenhouse to be reinforced to secure the structural stability.

Analysis of Environment Factors in eryngii Cultivation House (새송이 버섯 재배사의 환경요인 계측)

  • Park, Sung-Wh;Yoon, Yong-Cheol;Suh, Won-Myung;Lee, Keun-Hoo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.347-350
    • /
    • 2003
  • Pleurotus eryngii is one of the most promising mushrooms produced on the domestic farms. The quality as well as quantity of Eryngii is sensitively affected by micro climate factors such as temperature, relative humidity, $CO_2$ concentration, and light intensity. At the commercial mushroom cultivation houses, this study was carried out to find out reasonable range of each environmental factor and yield together with economic and safe structures influencing on the optimal productivity of Eryngii. This experiment was conducted from Jan. 26, 2003 to Aug. 2, 2003. Ambient temperature during the experiment period was not predominantly different from that of a normal year. The capacity of the hot water boiler and the piping systems were not enough. Maximum temperature difference between the upper and lower growth stage during a heating time zone was about $6^{\circ}C$. The max. and min. relative humidity were ranged approximately $42{\sim}100%$. The $CO_2$ concentration and the illuminance were lowly maintained during growing period. The average yield per bottle was about $54{\sim}102g$.

  • PDF

Study Case on the Bag Cultivation of Pleurotus ostreatus Using Fermenter (발효기를 이용한 느타리버섯 봉지재배 경영사례)

  • Chang, Hyun-You;Suh, Gyu-Sun;Lee, Soo-In
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.10 no.1
    • /
    • pp.169-181
    • /
    • 2008
  • The purpose of this study was to produce Pleurotus ostreatus using fermenter with bag cultivation. These results are as follows. 1. While mushroom composts were being fermented in a fermenter, the physical property of the fermented composts was getting better when there isn't any screw or revolving flies in the fermenter and the strength of pressing the composts was getting less. 2. The composts were fermented well as slaked lime of 1% density added to the composts. 3. According to the result of examining our fermenting ways, composts were in the best condition after being fermented for 48 hours since the temperature in a fermenter has come to 60℃, which could be reached by heating the fermenter by 40℃ after putting compost materials and water into it. 4. The good condition of fermenting could be maintained by controlling the speed of revolving flies, therefore the speed be down when the temperature is above 60℃ and up bellow 60℃. 5. Since the composts had been added with 1.5~2% of cottonseed meal or rice bran, the fermented composts were in good condition and also the quantity and quality of the mushroom produced on the fermented composts were satisfied. 6. There were needed 7 hours of labour for 3days from the first day of putting composts into a fermenter for fermenting 3.5M/T(10,000~12,000bags of 750~800g per bag) of composts to the third day of finishing the fermenting work, and also the cost was 112,066₩(130$) including 52,066₩(60$) of electric charge and fuel expense.

Analysis of Environment Factors in Pleurotus eryngii Cultivation House (새송이버섯 재배사의 환경요인 분석)

  • Yoon, Yong-Cheol;Suh, Won-Myung;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.12 no.4
    • /
    • pp.200-206
    • /
    • 2003
  • Pleurotus eryngii(King oyster) is one of the most promising mushrooms produced on the domestic farms. The quality as well as quantity of Eryngii is sensitively affected by micro climate factors such as temperature, relative humidity, $CO_2$ concentration, and light intensity. To safely produce high-quality Eryngii all the year round, it is required that the environmental factors be carefully controlled by well designed structures equipped with various facilities and control systems. At the commercial mushroom cultivation house(A,B), this study was carried out to find out reasonable range of each environmental factor and yield together with economic and safe structures influencing on the optimal productivity of Eryngii. this experiment was conducted for about two-month from Nov. 11, 2002 to Dec. 30, 2002 in Eryngii. cultivation house-A, B. Ambient temperature during the experiment period was not predominantly different from that of a normal year. The capacity of the hot water boiler and the piping systems were not enough. Maximum air temperature difference between the upper and lower growth stage during a heating time zone was about 2~3$^{\circ}C$. The max. and min. relative humidity were ranged approximately 60~100%, and average relative humidity was ranged approximately 80~100%. And $CO_2$concentration increased until maximum 1,600~1,800 ppm with the passing growing period. The illuminance in cultivation house was widely distributed from 20lx to 160 lx in accordance with position, and it was maintained lower than the recommended illuminance range 100~200 lx. The average yield per bottle was about 67~85g. But the optimal productivity will be evaluated by considering the quality and quantity of mushroom production, energy requirements, facility construction and management cost, etc.

Effect of Heating by Infrared Heating Lamps on Growth of Strawberry and Heating Cost (적외선 난방등을 이용한 난방이 딸기의 생육과 난방비에 미치는 영향)

  • An, Jae Uk;An, Chul Geon;Hwang, Yeon Hyeon;Yoon, Hae Suk;Chang, Young Ho;Shon, Gil Man;Jeong, Byoung Ryong
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.355-360
    • /
    • 2013
  • Diesel-burning air heater (air heater) and infrared heating lamp (infrared heater) were installed as auxiliary heaters in two single water-curtained plastic greenhouses with a set night temperature of $6^{\circ}C$ for cultivation of strawberry 'Seolhyang'. The average night air temperature was $6.6^{\circ}C$ in the infrared heater treatment and $7.1^{\circ}C$ in the air heater treatment. However, when the minimum outside temperature fell below $-10^{\circ}C$, the air heater had less internal temperature fluctuations. In contrast, the infrared heater had some cases of falling below the set temperature. The relative humidity was higher than 98% by the side-effect of water-curtain system regardless of the heating system. There was about $5^{\circ}C$ difference in leaf temperature between the turned-on and -off state of the infrared heater, and the efficacy of the infrared heater on leaf temperature was only limited to about 4 meters from the system. Peduncle length and plant height in the infrared heater tended to be greater than those in the air heater. There was, however, no statistically difference in leaf size and numbers of leaves, flowers on first cluster and branches. There was no difference in soluble solids content, fruit firmness, average fruit weight of the harvested fruits, and the yield. Comparing the heating costs, the air heater system took 622,662 won based on 543 L tax-free diesel, while the infrared heater system took 235,284 won by consuming 5,685 kWh of electricity, and 62.2% heating costs saving was achieved.

Estimation of Surplus Solar Energy in Greenhouse (I) - Case Study Based on 1-2W Type - (온실내 잉여 태양에너지 산정 (I) - 1-2W형을 중심으로 -)

  • Suh, Won-Myung;Bae, Yong-Han;Ryou, Young-Sun;Lee, Sung-Hyoun;Yoon, Yong-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.79-86
    • /
    • 2009
  • This research performed to analyze surplus solar energy, which is generated from a greenhouse during daytime, and to make the basic materials for designing thermal energy storage system for surplus solar energy. For this goal, it analyzed the surplus solar energy coming from two types of greenhouse. The results of this research are as per the below: In the case of 1-2W-type greenhouse, this research gave the same temperature and ventilation condition regardless of regions, but it was judged that the quantity of surplus solar energy could be greatly changed, depending on the energy consumed for the photosynthesis and evapotranspiration of crops in the greenhouse, on the heating temperature during daytime and night, on the existence/non-existence of a curtain and its warming effect, and on the ventilation temperature suitable for the overcoming of high temperature troubles or for the optimum cultivation temperature. In the case of a single-span greenhouse, there was a big difference in energy incoming and outgoing by month, but throughout seasons, 85.0 % of the total energy put into the greenhouse was solar energy and the energy input by heating was just 15.0 % of the total. 26.4 % of the total energy input for the greenhouse was used for photosynthesis and evapotranspiration of crops, and 44.2 % of the remaining 73.6 % went out in the form of radiant heat through the surface of the greenhouse. That is, 25.2 % of the total energy loss was just the surplus solar energy. 67.6 % of the total heating energy was concentrically used for 3 months from December to February next year, but the surplus solar energy during the same period was just 19.4 % of the total annual quantity so it was found that the given condition was more restrictive in directly converting the surplus heat into greenhouse heating. Under the disadvantageous circumstance of 3 months from December to February next year, it was possible to supplement 28 % (December) $\sim$ 85 % (February) of heating energy with surplus solar energy.

Analysis of Test Operations Effect of Open-Closed Loops Complex Geothermal System Combined with Groundwater Well (지하수정호 결합 복합지열시스템의 시범운영 효과분석)

  • Song, Jae-Yong;Kim, Ki-Joon;Lee, Geun-Chun;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.475-488
    • /
    • 2018
  • This study evaluates geothermal system efficiency in terms of input power and heat exchange volume on the heat-source and load sides, by applying a combined open-closed type loop system comprising a geothermal system and a groundwater well to a cultivation site. In addition, this study analyzes the effects of heating and cooling for a complex geothermal system, by evaluating the temperatures of an external site and a cultivation site during operation. During cooling operations the heat exchange volume on the heat source side, average 90.0kW/h for an open type system with an input of 235L/minute groundwater, and 40.1kW/h for a closed type system with an input of 85L/minute circulating water, for a total average heat exchange volume of 130.1kW/h. The actual heat exchange volume delivered on the load side averages 110.4kW/h. The average EER by analysis of the geothermal system's cooling efficiency is 5.63. During heating operation analysis, the heat exchange volume on the heat source side, average 60.4kW/h in an open type system with an input of 266L/minute groundwater, and 22.4kW/h in closed type system with an input of 86L/minute circulating water, for a total average heat exchange volume of 82.9kW/h. The actual heat exchange volume delivered on the load side averages 112.0kW/h in our analysis. The average COP determined by analysis of the geothermal system's heating efficiency is 3.92. Aa a result of the tradeoff between the outside temperature and the inside temperature of the production facility and comparing the facility design with a combined well and open-closed loops geothermal(CWG) system, we determine that the 30RT-volume CWG system temperature are lower by $3.4^{\circ}C$, $6.8^{\circ}C$, $10.1^{\circ}C$ and $13.4^{\circ}C$ for ouside temperature is of $20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$ and $35^{\circ}C$, respectively. Based on these results, a summer cooling effect of about $10^{\circ}C$ is expected relative to a facility without a CWG system as the outside temperature is generally ${\geq}30^{\circ}C$. Our results suggest that a complex geothermal system provides improvement under a variety of conditions even when heating conditions in winter are considered. Thus It is expected that the heating-cooling tradeoffs of complex geothermal system are improved by using water screen.