• Title/Summary/Keyword: Cucumber disease

Search Result 270, Processing Time 0.022 seconds

First Report of Pseudomonas viridiflava Causing Leaf Spot of Cucumber in Korea (Pseudomonas viridiflava에 의한 오이 점무늬병의 발생 보고)

  • Seo, Yunhee;Park, Mi-Jeong;Back, Chang-Gi;Park, Jong-Han
    • Research in Plant Disease
    • /
    • v.24 no.4
    • /
    • pp.328-331
    • /
    • 2018
  • A severe disease with leaf spots and necrotic symptoms was observed in cucumber (Cucumis sativus L.) seedlings in April 2018 at a nursery in Kimjae, Korea (35o 47'09.8"N 127o 2'24.3"E). The infected plants initially showed spots on water-soaked cotyledons which, at later stages, enlarged and spread to the leaves, which the lesions becoming dry and chlorotic. The symptomatic samples were collected from cucumber and the isolates were cultured on LB agar. The representative bacterial strain selected for identification showed fluorescent on King's medium B, was potato rot-positive, levan and arginine dihydrolase-negative, oxidase-negative and tobacco hypersensitivity-positive in LOPAT group 2 as determined by LOPAT tests. A pathogenicity test was carried out on a 3-week-old cucumber. After 3 days of inoculation, leaf spots and necrotic symptoms appeared on the cucumber, similar to the originally infected plants. The infecting bacterial strain was identified as Pseudomonas viridiflava, by 16S rDNA sequence analysis. This is the first report of leaf spot diseases on cucumber caused by P. viridiflava.

Biological control of Pythium damping-off of cucumber by Bacillus stearothermophilus YC4194 (Bacillus stearothermophilus YC4194에 의한 Pythium 모잘록병의 생물학적 방제)

  • Yang, Hyun-Sook;Sohn, Hwang-Bae;Chung, Young-Ryun
    • Research in Plant Disease
    • /
    • v.8 no.4
    • /
    • pp.234-238
    • /
    • 2002
  • In vitro and in vivo activities of a biocontrol agent, Bacillus stearothermophilus strain YC4194 was evaluated for the control of Pythium damping-off of cucumber. B. stearothermophilus YC4194 inhibited germination of cystospores and formation of zoosporangia of Pythium aphanidermatum in vitro. Incorporation of a bentonite and talc based formulation(10$^{9}$ cfu/g) of B. stearothermophilus YC4194 to the nursery soils (10 g/ι soil) resulted In a significant (p=0.01) reduction in the disease severity of cucumber damping-off after inoculation with P. aphanidermatum. The control efficacy of B. stearothermophilus YC4194 formulation was not different from that of the fungicides, dimethomorph, metalaxyl, ethaboxam. When the cucumber plants were transplanted to the soil inoculated with P. aphanidermatum zoospores, the B. stearothermophilus YC4194 maintained the high population density in rhizosphere soil upto 10$^{7}$ cfu/g until 15 days after treatment.

Selection and Efficacy of Soil Bacteria Inducing Systemic Resistance Against Colletotrichum orbiculare on Cucumber

  • Kwack, Min-Sun;Park, Seung-Gyu;Jeun, Yong-Chull;Kim, Ki-Deok
    • Mycobiology
    • /
    • v.30 no.1
    • /
    • pp.31-36
    • /
    • 2002
  • Soil bacteria were screened for the ability to control cucumber anthracnose caused by Colletotrichum orbiculare through induced systemic resistance(ISR). Sixty-four bacterial strains having in vitro antifungal activity were used for selecting ISR-inducing strains in cucumber. Cucumber seeds(cv. Baeknokdadagi) were sown in potting mixtures incorporated with the soil bacteria, at a rate of ca. $10^8$ cells per gram of the mixture. Two week-old plants were then transplanted into the steam-sterilized soil. Three leaf-stage plants were inoculated with a conidial suspension($5{\times}10^5$ conidia/ml) of C. orbiculare. Diseased leaf area(%) and number of lesions per $cm^2$ leaf were evaluated on third leaves of the plants, $5{\sim}6$ days after inoculation. Among 64 strains tested, nine strains, GC-B19, GC-B35, GK-B18, MM-B22, PK-B14, RC-B41, RC-B64, RC-B65, and RC-B77 significantly(P=0.05) reduced anthracnose disease compared to the untreated control. In contrast, some bacterial strains promoted susceptibility of cucumber to the disease. From the repeated experiments using the nine bacterial strains, GC-B19, MM-B22, PK-B14, and RC-B65 significantly(P=0.05) reduced both diseased leaf area(%) and number of lesions per $cm^2$ leaf in at lease one experiment. These strains with control efficacy of $37{\sim}80%$ were determined to be effective ISR-inducing strains.

Defense Response of Cucumber Plants Treated with Neobacillus sp. JC05 Extract against Meloidogyne incognita (Neobacillus sp. JC05 추출물을 처리한 오이 식물의 고구마뿌리혹선충에 대한 방어 반응 검정)

  • Kim, Yu-Ri;Jang, Hwajin;Sang, Mee Kyung
    • Korean Journal of Organic Agriculture
    • /
    • v.30 no.3
    • /
    • pp.393-407
    • /
    • 2022
  • The effect of Neobacillus sp. JC05 extract on the defense response in cucumber plants against root-knot nematode (RKN) was evaluated. As a result of drench treatment of JC05-extract in cucumber plants, formation of egg mass per plants and disease severity were significantly decreased compared to untreated control plants; the malondialdehyde contents also decreased in JC05-extract treated plants. When eggs of Meloidogyne incognita were inoculated, cucumber plants treated with JC05-extract elevated pathogenesis-related gene expression such as chitinase and lipoxygenase, these are well known as inducing resistance in plants, in addition, peroxidase among antioxidant enzymes was significantly activated. Moreover, the JC05-extract enhanced FDAse activity in soils grown cucumber plants inoculated by eggs of M. incognita. Taken together, these results suggest that the JC05-extract could involve in activation of defense-related mechanisms of cucumber plants and result in decrease of disease occurrence caused by M. incognita.

Rhizobacteria-mediated Induced Systemic Resistance in Cucumber Plants against Anthracnose Disease Caused by Colletotrichum orbiculare

  • Jeun, Yong-Chull;Lee, Yun-Jeong;Bae, Yeoung-Seuk
    • The Plant Pathology Journal
    • /
    • v.20 no.3
    • /
    • pp.172-176
    • /
    • 2004
  • Bacterial isolates TRL2-3 and TRK2-2 showing anti-fungal activity in vitro test against some plant pathogens were identified as Pseudomonas putida and Micrococcus luteus, respectively. Pre-treatment with both bacterial isolates at the concentration 1.0$\times$ $10^7$ and $10^6$cfu/ml in the rhizosphere could trigger induced systemic resistance in the aerial part of cucumber plants against anthracnose caused by Colletotrichum orbiculare. However, the pre-treatment with the higher concentration at 1.0 $\times$ $10^8$ cfu/ml of both isolates could not induce resistance after challenge inoculation with C. orbiculare. As a positive control, the treatment with DL-3 amino butyric acid caused a remarkable reduction of disease severity whereas the lesions on the leaves of untreated plants developed apparently after the fungal inoculation. From these results, it was recomended that disease control using both bacterial isolates inducing systemic resistance in the field where chemical application is forbid.

Observations of Infection Structures on the Leaves of Cucumber Plants Pre-treated with Arbuscular Mycorrhiza Glomus intraradices after Challenge Inoculation with Colletotrichum orbiculare

  • Lee, Chung-Sun;Lee, Yun-Jeong;Jeun, Yong-Chull
    • The Plant Pathology Journal
    • /
    • v.21 no.3
    • /
    • pp.237-243
    • /
    • 2005
  • Resistance inductions on the leaves of cucumber plant by an arbuscular mycorrhiza Glomus intraradices were investigated. In addition, the infection structures were observed at the penetration sites on the leaves of plant inoculated with Colletotrichum orbiculare using a fluorescence microscope. The severity of anthracnose disease caused by Colletotrichum orbiculare was significantly decreased on the leaves of cucumber plant colonized with G intraradices compared with those of non-treated control plants. As a positive control, pre-treatment with DL-3-aminobutyric acid (BABA) caused a remarkable reduction of the disease severity on the pathogen-inoculated leaves. There were no significant differences in the frequency of either germination or appressorium formation of the plant pathogen between mycorrhiza colonized and non-treated plants. It was also the same on the BABA pre-treated plants. However, the frequency of callose formation was significantly high on the leaves of G intraradices colonized plants compared to those of non-treated control plants at 5 days after challenge inoculation. On the leaves of BABA treated plants callose formation was not significantly high than those of non-treated, although the disease severity was more strongly suppressed. It was suggested that the resistance induced by colonization with G. intraradices might be related to the enhancement of callose formation at the penetrate sites on the leaves invaded by the pathogen, whereas resistance by BABA did not.

Impact of Rhizosphere Competence of Biocontrol Agents upon Diseases Suppression and Plant Growth Promotion

  • Park, Chang-Seuk-
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1994.06a
    • /
    • pp.27-49
    • /
    • 1994
  • Root colonization of biocontrol agents via seed treatment was investigated and a compatible combination, Gliocladium virens G872B and Pseudomonas putida Pf3, in colonizing cucumber rhizosphere was confirmed through the study. Much higher number of fungal and bacterial propagules were detected when two isolates were inoculated together. The presence of Pf3 in root system was greatly helpful to G872B to colonize at root tip. The mechanism of this phenomenon is partially elucidated through the results of in vitro experiments and the observations of scanning electron and fluorescence microscope. Addition of Pf3 cells resulted earlier germination of G872B conidia and increased mycelial growth. And the more number of germinated conidia on seed coat, the more vigorous hypal streching and sporulation on the root surface were observed in coinoculated treatment. The propagules of G872B on the cucumber root when they were challenged against the pathogenic Fusarium oxysporum, were even higher than that of G872B treated alone, and the magnitude of such a difference was getting grater toward the root ip and the population of F. oxysporum on the root was reduced by seed inoculation of G872B. The rhizosphere competence was obviously reflected to disease suppression and plant growth promotion that induced by the given isolate. Green house experiments revealed that the combined treatment provided long-term disease suppression with greater rate and the larger amount of fruit yield than single treatments. Through this study the low temperature growing Pseudomonas fluorescens M45 and MC07 were evaluated to apply them to the winter crops in field or plastic film house. In vitro tests reveal that M45 and MC07 inhibited the mycelial growth of Pythium ultimum, Rhizoctona solani and Phytophthora capsici and enhanced growth of cucumber cotyledon in MS agar. This effect was more pronounced when the bacteria were incubated at 14$^{\circ}C$ than at 27$^{\circ}C$. And disease suppression and plant growth promotion in green house were also superior at low temperature condition. Seed treatment of M45 or soil treatment of MC07 brought successful control of damping-off and enhanced seedling growth of cucumber. The combined treatment of two isolates was more effective than any single treatment.

  • PDF

Use of Quantitative Models to Describe the Efficacy of Inundative Biological Control of Fusarium Wilt of Cucumber

  • Singh, Pushpinder P.;Benbi, Dinesh K.;Young, Ryun-Chung
    • The Plant Pathology Journal
    • /
    • v.19 no.3
    • /
    • pp.129-132
    • /
    • 2003
  • Fusarium wilt of cucumber caused by Fusarium oxy-sporum f. sp. cucumerinum is a serious vascular disease worldwide. Biological control of Fusarium wilt in several crops has been accomplished by introducing non-pathogenic Fusarium sup. and other biocontrol agents in soil or in infection courts. In this study, quantitative models were used to determine the biocontrol efficacy of inundatively applied antagonist formulations and the length of their effectiveness in controlling Fusarium wilt of cucumber. Quantitative model of the form [Y=L (1${-exp}^{-kx}$)] best described the relationship between disease incidence (Y, %) and inoculum density (X) of isolates F51 and F55. Isolate F51 was selected as a more virulent isolate based on the extent of its effectiveness in causing the wilt disease. The degree of disease control (Xi/X) obtained with the density of the biocontrol agent (Z), was described by the model [Xi/X=A (1${-exp}^{-cz}$)]. The zeolite-based antagonist formulation amended with chitosan (ZAC) was better at lower rates of application and peaked at around 5 g/ kg of the potting medium, whereas the peat-based antagonist formulation (PA) peaked at around 10 g/kg of the potting medium. ZAC formulation provided significantly better suppression of Fusarium wilt as described by the curvilinear relationship of the type Y= a+bX+c$X^2$, where Y represents percent disease incidence and X represents sustaining effect of the biocontrol agent.

Biological Control of Cucumber Powdery Mildew Using A Hyperparasite, Ampelomyces quisqualis 94013 (Ampelomyces quisqualis 94013을 이용한 오이 흰가루병 생물적 방제)

  • Lee, Sang-Yeob;Kim, Yong-Ki;Kim, Hong-Gi
    • Research in Plant Disease
    • /
    • v.13 no.3
    • /
    • pp.197-203
    • /
    • 2007
  • An isolate of Ampelomyces quisqualis 94013(AQ94013) was selected as an effective parasite for biological control of cucumber powdery mildew. In the greenhouse, occurrence of cucumber powdery mildew was significantly suppressed for nine days by pre-treatment with $5.0{\times}10^6/ml$ and $5.0{\times}10^7/ml$ of conidial suspension of AQ94013. The disease was effectively controlled within three to seven days by post-treatment with the $5.0{\times}10^6/ml-conidial$ suspension of AQ94013. When AQ94013 was treated at concentration of $5{\times}10^6/ml$ three times at seven-day interval in the vinylhouse, the control effect was higher than that treated twice at ten-day interval and that treated with fenarimol twice. As the results, Ampelomyces quisqualis 94013 could be a prospective biofungicide for biological control of powdery mildew of cucumber.

Envrionment-Friendly Effects of Espil and Copper Hydroxide for Prevention of Powdery Mildew on Cucumber, Tomato, and Red Pepper (에스필과 수산화동 혼용에 의한 오이, 토마토, 고추 흰가루병의 친환경 방제 효과)

  • Soh, Jae-Woo;Han, Kyung-Sook;Lee, Seong-Chan;Lee, Jung-Sup;Park, Jong-Han
    • Research in Plant Disease
    • /
    • v.20 no.2
    • /
    • pp.95-100
    • /
    • 2014
  • This research was performed to examine the effects of mixed espil and copper hydroxide for powdery mildew prevention on cucumber, tomato and pepper. On prevention effect for powdery mildew on cucumber, results revealed that mixed espil and copper hydroxide with a ratio of 4 : 1, disease incidence rate was 18.9% and prevention effect was 69.9%. Another treatment with a ratio of 8 : 1 showed an disease incidence rate of 18.1% and prevention effect of 71.1%, thus, showed great effectiveness. For powdery mildew on tomato, espil and copper hydroxide were mixed using the ratio 4 : 1, results showed an disease incidence rate of 12.4% and prevention effect of 85.3%. Treatment using the ratio of 8 : 1, results showed an disease incidence rate of 14.3% and prevention effect of 83.0%, thus, showed great effectiveness. For powdery mildew on redpepper, espil and copper hydroxide were mixed using the ratio of 4 : 1 with results showed disease incidence rate of 17.7% and prevention effect of 83.0%. From the results, this treatment is the most effective with the lowest attack rate and highest prevention effect. Deducing from the study, it was found out that using mixed espil and copper hydroxide using the ratios 4 : 1 or 8 : 1 are the most effective method for powdery mildew prevention. Mixed ratio of 4 : 1 or 8 : 1 was most effective for preventing powdery mildew on cucumber and tomato, while the espil and copper hydroxide ratio of 4 : 1 was the most effective method for powdery mildew prevention on pepper.