• Title/Summary/Keyword: Cubic Si

Search Result 179, Processing Time 0.025 seconds

Single Source Chemical Vapor Deposition of Epitaxial Cubic SiC Films on Si (입방형 탄화규소 박막의 적층 성장)

  • 이경원;유규상;구수진;김창균;고원용;조용국;김윤수
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.2
    • /
    • pp.133-138
    • /
    • 1996
  • Epitaxial cubic silicon carbide films have been deposited on carbonized Si(001) substrates using the single precursor 1, 3-disilabutane in the temperature range 900-$1000^{\circ}C$ under high vacuum conditions. The films grown were characterized by in situ RHEED, XPS, XRD, x-ray pole figure, SEM, and TEM. The results show that epitaxial cubic SiC films with smooth morphology and good crystallinity were formed in this temperature range. The single precursor 1, 3-disilabutane has been found suitable for the epitaxial growth of cubic SiC on Si(001) substrates.

  • PDF

On the Selection of FCC and BCC Lattices in Poly(styrene-b-isoprene) Copolymer Micelles

  • Bang, Joona;Lodge, Timothy P.
    • Macromolecular Research
    • /
    • v.16 no.1
    • /
    • pp.51-56
    • /
    • 2008
  • Spherical micelles of poly(styrene-b-isoprene) (SI) diblock copolymers in selective solvents have been reported to pack onto either face-centered cubic (fcc) or body-centered cubic (bcc) lattices. The selection rule for fcc and bcc lattices has been understood in terms of the intermicellar potentials, and they have been quantified using the ratio of the corona layer thickness to the core radius, $L/R_c$, as suggested by McConnell and Gast. In order to test the validity of the McConnell-Gast criterion, this study compared the $L/R_c$ values from various solutions i.e. nine SI copolymers in several different selective solvents. The McConnell-Gast criterion was not found to be a determining factor, even though it could explain the fcc/bcc selection qualitatively. From the phase diagrams, the transition between fcc and bcc phases was also considered as a function of concentration and temperature, and their physical mechanisms are discussed based on the recent mean-field calculation reported by Grason.

Heteroepitaxial Growth of Single 3C-SiC Thin Films on Si (100) Substrates Using a Single-Source Precursor of Hexamethyldisilane by APCVD

  • Chung, Gwiy-Sang;Kim, Kang-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.533-537
    • /
    • 2007
  • This paper describes the heteroepitaxial growth of single-crystalline 3C-SiC (cubic silicon carbide) thin films on Si (100) wafers by atmospheric pressure chemical vapor deposition (APCVD) at 1350 oC for micro/nanoelectromechanical system (M/NEMS) applications, in which hexamethyldisilane (HMDS, Si2(CH3)6) was used as a safe organosilane single-source precursor. The HMDS flow rate was 0.5 sccm and the H2 carrier gas flow rate was 2.5 slm. The HMDS flow rate was important in obtaing a mirror-like crystalline surface. The growth rate of the 3C-SiC film in this work was 4.3 μm/h. A 3C-SiC epitaxial film grown on the Si (100) substrate was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), reflection high energy electron diffraction (RHEED), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and Raman scattering, respectively. These results show that the main chemical components of the grown film were single-crystalline 3C-SiC layers. The 3C-SiC film had a very good crystal quality without twins, defects or dislocations, and a very low residual stress.

Derivation of Cubic and Hexagonal Mesoporous Silica Films by Spin-coating

  • Pan, Jia-Hong;Lee, Wan-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.418-422
    • /
    • 2005
  • By introducing spin-coating method to the evaporation induced self-assembly (EISA) process, a simple and reproducible route in controlling the mesophase of silica thin films has been developed for the first time in this work. When a comparatively solvent-rich Si-sol (The atomic ratio of TEOS : F127 : HCl : $H_2O$ : EtOH = 1 : 0.006 : 0.2 : 9.2 : 30) was used as coating solution, the mesophase of resultant silica films was selectively controlled by adjusting the spin-on speed. The cubic mesophase has been obtained from the coating at a low rpm, such as 600 rpm, while the 2-D hexagonal mesophase is formed at a high rpm, such as 2,500 rpm. At a medium coating speed, a mixture of cubic and hexagonal mesophase has been found in the fabricated films. The present results confirm that the evaporation rate of volatile components at initial step is critical for the determination of mesopore structures during the EISA process.

Structure Study of Polycrystalline $Na_3YSi_3O_9$ and Its Substitutes Related to $Na_4CaSi_3O_9,\;Ca_3Al_2O_6$ Structure

  • Kim, Chy-Hyung;Banks, Ephraim
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.1
    • /
    • pp.6-9
    • /
    • 1987
  • The study of the $Na_3YSi_3O_9$ structure, by x-ray diffraction and infrared spectrum, showed that $Na_3YSi_3O_9$ is similar to $Na_4CaSi_3O_9$ except for its being pseudo-cubic instead of cubic. The peaks in the x-ray diffraction pattern of $Na_3YSi_3O_9$ could therefore be indexed on the basis of the $Na_4CaSi_3O_9$ cell. Also, modified $Na_3MSi_3O_9$ (M = Lu, Yb, Tm, Er, Y, Ho, Dy, Gd, Eu, and Sm) type compounds were synthesized by introducing excess sodium, decreasing M(III) concentration, and substituting small amount of phosphorus for silicon. The unit cell parameters of the composition $Na_{3.2}M_{0.7}Si_{2.9}P_{0.1}O_{8.7}$ were estimated from x-ray powder diffraction patterns using the Cohen method.

A Study on the Structural Analysis of Amorphous Silicondioxide Prepared Sol-Gel Method with XRD (X-선 회절을 이용한 비정질 SiO$_2$ Gel 의 구조 해석에 관한 연구)

  • Yoon dai Hyun;Kim Ki Sun;Jung Hyun Chai
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.413-417
    • /
    • 1990
  • The structural variation process of amorphous SiO$_2$ gel upon heat-treatment conditions of 80, 250, 450 and 1000$^{\circ}C$ has been studied by using the radial distribution functions (RDF$_{obs}$) estimated from the X-ray diffraction intensities. The expected gel structure was determined by comparing the RDF$_{obs}$ with those for the other six standard samples selected appropriately. The structure of specimens prepared by sol-gel method is well consistent with that of fused SiO$_2$ (${\beta}$-cristobalite with cubic symmetry) except a slight difference in O-O band distance.

  • PDF

A Phase Transformation Study on Amorphous Diopside ($CaMgSi_2O_6$) (비정질 투휘석($CaMgSi_2O_6$)에 대한 상변이 연구)

  • 김영호
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.161-169
    • /
    • 2003
  • A phase transformation study on a synthetic amorphous diopside, $(Ca,Mg)SiO_3$has been carried out up to ∼30 GPa, and ∼$1000^{\circ}C$ using a diamond anvil cell and YAG laser heating system, respectively. A starting amorphous material shows a direct transition to cubic $(Ca,Mg)SiO_3$perovskite at high pressure, which contradicts to the crystalline diopside phase transformation sequence disproportionating into mixtures of the orthorhombic$ MgSiO_3$perovskite and the cubic $CaSiO_3$perovskite phases. This discrepancy might be due to the different starting materials as well as the temperature variations at each specific experiment performed. The present phase transfor mation sequence would modify the mineralogical assemblage in the Earth transition region and the lower mantle depending upon the pressure, temperature and the oxygen partial pressure.

An Evaluation of Three Dimensional Finite Element Model on the Strength Prediction of Particles Reinforced MMCs (입자강화형 금속복합재료의 강도 예측에 관한 3차원 유한요소 모델의 평가)

  • 강충길;오진건
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.124-138
    • /
    • 1998
  • Particles reinforced MMCs have many advantages over monolithic metals including a higher specific modulus, higher specific strength, better properties at elevated temperatures and better wear resistance. SiC$_p$/A16061 composites have good results in its mechanical properties. This work investigates SiC$_p$/A16061 composites in the microscopic view and compares the analytical results with the experimental ones. The discrepancy of the material properties between the reinforced particle, SiC$_p$, and the matrix material, A16061 appears to be so significant. Especially the coefficient of thermal expansion(CTE) of A16061 is 5 times larger than that of SiC$_p$. Thermal residual stress in MMCs is induced at high temperatures. The shape of particle is various but the theoretical model is not able to consider the nonuniform shape. Particle distribution is not homogeneous in experimental specimen. However, it is assumed to be homogeneous in simulation model. The shapes of particles are assumed to be not only perfect global but hexahedral shapes. The types of particle distribution are two - simple cubic array(SC array) and face-centered cubic array(FCC array).

  • PDF

Growth of hexagonal Si epilayer on 4H-SiC substrate by mixed-source HVPE method (혼합 소스 HVPE 방법에 의한 4H-SiC 기판 위의 육각형 Si 에피층 성장)

  • Kyoung Hwa Kim;Seonwoo Park;Suhyun Mun;Hyung Soo Ahn;Jae Hak Lee;Min Yang;Young Tea Chun;Sam Nyung Yi;Won Jae Lee;Sang-Mo Koo;Suck-Whan Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.45-53
    • /
    • 2023
  • The growth of Si on 4H-SiC substrate has a wide range of applications as a very useful material in power semiconductors, bipolar junction transistors and optoelectronics. However, it is considerably difficult to grow very fine crystalline Si on 4H-SiC owing to the lattice mismatch of approximately 20 % between Si and 4H-SiC. In this paper, we report the growth of a Si epilayer by an Al-related nanostructure cluster grown on a 4H-SiC substrate using a mixed-source hydride vapor phase epitaxy (HVPE) method. In order to grow hexagonal Si on the 4H-SIC substrate, we observed the process in which an Al-related nanostructure cluster was first formed and an epitaxial layer was formed by absorbing Si atoms. From the FE-SEM and Raman spectrum results of the Al-related nanostructure cluster and the hexagonal Si epitaxial layer, it was considered that the hexagonal Si epitaxial layer had different characteristics from the general cubic Si structure.