• Title/Summary/Keyword: Cube-Satellite

Search Result 87, Processing Time 0.017 seconds

Development of the software testbed for designing the electrical power system of the CubeSat Satellite (큐브위성의 전력시스템 설계를 위한 소프트웨어 테스트베드 설계)

  • Lee, Seongjun;Lim, Namgyu;Lee, Sunyeong;Baek, Jinsung;Park, Huimang;Kim, Junseok
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.470-471
    • /
    • 2018
  • 본 논문에서는 소형 큐브위성의 전력시스템 구성품의 용량 및 위성의 운용로직을 설계할 수 있는 소프트웨어 테스트베드 설계 방법을 제시한다. 기존 초소형 인공위성 시스템 설계를 위한 소프트웨어가 개발되어 상용품으로 판매되고 있으나, 주로 자세제어 시스템의 제어기 설계를 위해 소프트웨어가 사용되고있고, 텍스트기반 복잡한 구조로 되어있어 본 논문의 목적인 전력계 구성품 용량 및 운용로직을 설계하는데 이를 활용하기 어려운 측면이 있었다. 따라서 본 논문에서는 전력시스템의 구성품들을 전력 및 에너지 방정식으로 모델링하여 Matlab/Simulink에서 이를 구현함으로써 가독성을 높여 시스템 설계 및 분석 시간을 줄일 수 있는 소프트웨어 테스트베드 설계방법을 제시한다. 제안된 소프트웨어 테스트베드를 이용한 3리터 사이즈의 소형 큐브위성 시스템의 구성품 용량 및 운용로직 설계 결과를 본 논문에서 제시한다.

  • PDF

Critical Design of MIMAN CubeSat for Aerosol Monitoring Mission (미세먼지 관측 임무를 위한 MIMAN 큐브위성 상세 설계)

  • Jin, Sungmin;Kang, Dae-Eun;Kim, Geuk-Nam;Kim, Naeun;Kim, Young-Eon;Kim, Pureum;An, Seungmin;Ryu, Han-Gyeol;Park, Sang-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.1027-1035
    • /
    • 2021
  • We presents a design of 3U cubesat MIMAN (Monochrome imaging for monitoring aerosol by nano-satellite) for aerosol monitoring mission with high spatial resolution. The main objective of MIMAN mission is to take images of aerosols around Korea and to provide auxiliary data for GK 2B cloud masking. For this mission, we derived mission requirements and constraints for the MIMAN mission. We designed the mission architecture and concept of operations. To reduce risk factors in space operation, we considered the safety of the communication. In every operation modes, UHF communication is available so that the cubesat can operate based on the ground commands. So, we can handle every problem at the ground station during mission operations. Based on the mission and concept of operations, we confirmed that the system design satisfied the system requirements. We designed the system interface considering data flow of each hardware, and evaluated the safety of the system with system budget analysis.

SNIPE Mission for Space Weather Research (우주날씨 관측을 위한 큐브위성 도요샛 임무)

  • Lee, Jaejin;Soh, Jongdae;Park, Jaehung;Yang, Tae-Yong;Song, Ho Sub;Hwang, Junga;Kwak, Young-Sil;Park, Won-Kee
    • Journal of Space Technology and Applications
    • /
    • v.2 no.2
    • /
    • pp.104-120
    • /
    • 2022
  • The Small Scale magNetospheric and Ionospheric Plasma Experiment (SNIPE)'s scientific goal is to observe spatial and temporal variations of the micro-scale plasma structures on the topside ionosphere. The four 6U CubeSats (~10 kg) will be launched into a polar orbit at ~500 km. The distances of each satellite will be controlled from 10 km to more than ~1,000 km by the formation flying algorithm. The SNIPE mission is equipped with identical scientific instruments, Solid-State Telescopes(SST), Magnetometers(Mag), and Langmuir Probes(LP). All the payloads have a high temporal resolution (sampling rates of about 10 Hz). Iridium communication modules provide an opportunity to upload emergency commands to change operational modes when geomagnetic storms occur. SNIPE's observations of the dimensions, occurrence rates, amplitudes, and spatiotemporal evolution of polar cap patches, field-aligned currents (FAC), radiation belt microbursts, and equatorial and mid-latitude plasma blobs and bubbles will determine their significance to the solar wind-magnetosphere-ionosphere interaction and quantify their impact on space weather. The formation flying CubeSat constellation, the SNIPE mission, will be launched by Soyuz-2 at Baikonur Cosmodrome in 2023.

Capture Simulation Study for Space Debris Using Space-Nets (우주 그물을 이용한 우주 쓰레기 포획 시뮬레이션 연구)

  • Hwang, Ui-Jin;Jang, Mi;Lim, Jun-Hyun;Shin, Hyun-Cheol;Sim, Chang-Hoon;Park, Jae-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.6
    • /
    • pp.435-444
    • /
    • 2022
  • This study conducts capture simulations of space debris using a space-net. The present capture simulations are performed using ABAQUS, a nonlinear structural dynamics analysis code. A square space-net with 1 m × 1 m and a space debris with a cube configuration(0.3 m × 0.3 m × 0.3 m and 30 kg) are considered as baseline models. Using the baseline models, the capture simulation using ABAQUS is conducted to understand the capture process and establish the criteria of capture success or fail. In addition, the capture simulations are performed when various properties of the space-net are considered, and it is investigated that major design factors of the space-net are recognized to capture successfully the space debris.

Design and Development of the SNIPE Bus System (초소형위성 SNIPE 본체 설계 및 개발)

  • Kim, Hae-Dong;Choi, Won-Sub;Kim, Min-Ki;Kim, Jin-Hyung;Kim, KiDuck;Kim, Ji-Seok;Cho, Dong-Hyun;Lee, Jaejin
    • Journal of Space Technology and Applications
    • /
    • v.2 no.2
    • /
    • pp.81-103
    • /
    • 2022
  • In this paper, the contents of the design and development process of the 6U micro-satellite Snipe (SNIPE, national name Toyosat; small scale magnetospheric and Ionospheric plasma experiment ), which was developed to observe the near-global space environment through polarization flight for the first time in Korea, were described. Snipe performs transversal flight to observe the Earth's surrounding space environment in three dimensions, and aims to simultaneously observe the space plasma density and temperature in the ionosphere, as well as temporal changes in the solar magnetic field and electromagnetic waves. In this way, it was developed by dividing it into a test certification model (EQM) and a flight model (FM) to perform the actual mission for at least six months, away from developing a cube satellite for short-term space technology verification or manpower training. Currently, Snipe, which has completed the development of a total of four FM and completed all space environment tests, is scheduled to launch 2023. In this paper, we introduce the design contents and development process of the Snipe satellite body ahead of launch, and hope that it will be a useful reference for the development of 6U-class micro-satellite for full-scale mission in Korea.

Life Prediction of Failure Mechanisms of the CubeSat Mission Board using Sherlock of Reliability and Life Prediction Tools (신뢰성 수명예측 도구 Sherlock을 이용한 큐브위성용 임무보드의 고장 메커니즘별 수명예측)

  • Jeon, Su-Hyeon;Kwon, Yae-Ha;Kwon, Hyeong-Ahn;Lee, Yong-Geun;Lim, In-OK;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.2
    • /
    • pp.172-180
    • /
    • 2016
  • A cubesat classified as a pico-satellite typically uses commercial-grade components that satisfy the vibration and thermal environmental specifications and goes into mission orbit even after undergoing minimum environment tests due to their lower cost and short development period. However, its reliability exposed to the physical environment such as on-orbit thermal vacuum for long periods cannot be assured under minimum tests criterion. In this paper, we have analysed the reliability and life prediction of the failure mechanisms of the cubesat mission board during its service life under the launch and on-orbit environment by using the sherlock software which has been widely used in automobile fields to predict the reliability of electronic devices.

Preliminary Design of PNUSAT-1 Cubesat for Vessel Monitoring (선박 모니터링을 위한 PNUSAT-1 큐브위성 시스템 예비 설계)

  • Kim, Haelee;Cho, Dong-hyun;Lee, Sanghoon;Park, Chanhwi;Lim, Ha Kyeong;Kim, Geonwoo;Kwak, Minwoo;Lee, Changhyun;Kim, Shinhyung;Koo, Inhoi;Lee, Daewoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.137-146
    • /
    • 2022
  • AIS(Automatic Identification System) is a device that automatically transmits and receives ship information and is mounted on the ship. AIS information of ships near the coast can be received on the ground, but when going out to sea more than 50 nautical miles, communication with the ground is cut off. To solve this problem, ship information can be transmitted to the ground through an AIS satellite equipped with an AIS receiver. There is no case of AIS satellite development in Korea yet, and many domestic shipping companies are using overseas AIS services. PNUSAT-1 is a 1U+ CubeSat, developed by Pusan National University, and it is equipped with an AIS receiver for monitoring of ships and transmitting ship information to the ground. Since the mission data of PNUSAT-1 is in text format, the data size is not large. In consideration of this, communication equipment, low-precision sensors, and actuators were selected. In this paper, system preliminary design of PNUSAT-1 was performed, requirements for mission performance, operation scenario and mode design, hardware and software selection, and preliminary design of each subsystem were performed.