• Title/Summary/Keyword: Cube Array Artifact

Search Result 2, Processing Time 0.017 seconds

Fast Assessment of Machine Tool Errors Using a Touch Probe and Cube Array Artifact (터치프로브와 Cube Artifact를 이용한 공작기계 오차의 신속한 규명)

  • 최진필;이상조;권혁동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.650-653
    • /
    • 2002
  • In this paper, a methodology to assess machine tool errors quickly is suggested using a touch probe and a cube array artifact. Parameterized error models derived are expressed of model coefficient vectors and backlash errors to be determined. To determine the unknown model coefficient vectors, a cube array artifact is proposed. Considering CMM measurement data of cube vertex coordinates. error vectors for all axes ate obtained and used to complete the error model. Some simulation results show that the suggested error model can follow the true values within 10$\mu\textrm{m}$. To verify the error model, a circular part with two concentric circles is measured and simulated. The results show that the differences between CMM and OMM radius errors are smaller than 15$\mu\textrm{m}$.

  • PDF

Machining Accuracy Improvement by On Machine Part Measurement and Error Compensation (기상측정시스템과 오차보정을 이용한 가공정밀도 향상)

  • 최진필;민병권;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.34-41
    • /
    • 2003
  • This paper suggests a methodology fur improving the machining accuracy by compensating for the machining errors based on on-machine measurement process. Probing errors and machine tool errors included in the measurement data were calibrated or compensated to obtain the actual machining errors. Machine tool errors were modeled in forward and backward directions according to the axis movement direction to consider the effects of backlash errors on the measurement data, and model parameters were determined by measuring a cube array artifact. A rectangular workpiece was machined and then measured with a touch probe as a verification experiment. Machining experiments showed that the machining errors were reduced to within the designated tolerance after compensating for the actual machining errors by modifying the original footpath for the next-step machining.