• Title/Summary/Keyword: CuZn-SOD

Search Result 271, Processing Time 0.031 seconds

Effect of $\alpha$-Tocopherol and $\beta$-Carotene Supplementation on Oxidative Damage by Lipid Oxidation in Rat Liver

  • Song, Yeong-Ok;Kim, Hyun-Young;Jun, Yeong-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.371-377
    • /
    • 1995
  • The effect of ${\alpha}$-tocopherol and ${\beta}$-carotene supplementation on reducing the oxidative damag in the liver of rats were studied. Forth-five male Sprague Dawley aged 4 weeks were randomly assigned to 9 groups of five for the 12 weeks of the study. Nine groups, sardine oil, sardine oil+Vt E, sardine oil+${\beta}$-carotene, soybean oil, soybean oil+Vt E, soybean oil+${\beta}$-carotene, lard, lard+Vt E, lard+${\beta}$-carotene group, were prepared. Sardine oil, soybean oil, or lard was used for dietary fat and 200% of ${\alpha}$ -tocopherol or 150% of ${\beta}$-carotene was supplemented to each diet. Each diet supplied 65% of total energy as carbohydrate, 15% as protein, and 20% as lipid. The MDA value and protein carbonyl contents of sardine oil group were significantly different(p<0.05) to those of other fat groups indicating that the most severe lipid oxidation occurred in the group fed diet containing highly polyunsaturated fatty acid. When ${\alpha}$-tocopherol or ${\beta}$ -carotene was supplemented to the sardine oil diet, MDA value(-35%, -15%, respectively) and protein carbonyl content(-44%, -32%, respectively) decreased significantly(p<0.05). Cu, Zn-superoxide dismutase(SOD) and catalase activities of three different sardine oil groups with or without antioxidants were lower than those of soybean oil or lard group. The reducing effect of ${\alpha}$-tocopherol on oxidative damage in sardine oil group supplemented with ${\alpha}$-tocopherol was noticeable(p<0.05). However the adverse effect of ${\beta}$-carotene was observed. SOD and catalase activities of ${\beta}$-carotene supplemented groups were that the lowest among the same fat groups, but the differences were not statistically significant. The possible cause of decreased enzyme activity seemed to be related to the vitamin A(Vt A) toxicity in the liver where retinol converted from dietary ${\beta}$-carotene in the intestinal mucosa was stored.

  • PDF

Cloning of Superoxide Dismutase (SOD) Gene of Lily 'Marcopolo' and Expression in Transgenic Potatoes

  • Park, Ji-Young;Kim, Hyun-Soon;Youm, Jung-Won;Kim, Mi-Sun;Kim, Ki-Sun;Joung, Hyouk;Jeon, Jae-Heung
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • Differential display reverse transcription PCR (DDRT-PCR) analysis was performed on lily 'Marcopolo' bulb scale for isolation of expressed genes during bulblet formation. Cu/Zn lily-superoxide dismutase (LSOD) of 872 bp gene, with ability to scavenge reactive oxygen in stress environment, was isolated. Northern blot analysis showed expression levels of LSOD maximized 12 days after bulblet formation. Ti plasmid vectors were constructed with sense and antisense expressions of LSOD gene and transformed into potato. Southern blot analysis of transgenic potatoes revealed different copies of T-DNA were incorporated into potato genome. In transgenic potatoes, lily SOD gene was overexpressed in sense lines and not in antisense lines. In native polyacrylamide gel electrophoresis analysis, additional engineered LSOD was detected in sense overexpressed transgenic line only. Transgenic potatoes were subjected to oxidative stress, such as herbicide methyl viologen (MV). Transgenic potato lines with sense orientation exhibited increased tolerance to MV, whereas in antisense lines exhibited decreased tolerance. In vitro tuberization of transgenic potato with sense orientation was promoted, but was inhibited in transgenic potato with antisense orientation.

Melatonin mitigates the adverse effect of hypoxia during myocardial differentiation in mouse embryonic stem cells

  • Lee, Jae-Hwan;Yoo, Yeong-Min;Lee, Bonn;Jeong, SunHwa;Tran, Dinh Nam;Jeung, Eui-Bae
    • Journal of Veterinary Science
    • /
    • v.22 no.4
    • /
    • pp.54.1-54.13
    • /
    • 2021
  • Background: Hypoxia causes oxidative stress and affects cardiovascular function and the programming of cardiovascular disease. Melatonin promotes antioxidant enzymes such as superoxide dismutase, glutathione reductase, glutathione peroxidase, and catalase. Objectives: This study aims to investigate the correlation between melatonin and hypoxia induction in cardiomyocytes differentiation. Methods: Mouse embryonic stem cells (mESCs) were induced to myocardial differentiation. To demonstrate the influence of melatonin under hypoxia, mESC was pretreated with melatonin and then cultured in hypoxic condition. The cardiac beating ratio of the mESC-derived cardiomyocytes, mRNA and protein expression levels were investigated. Results: Under hypoxic condition, the mRNA expression of cardiac-lineage markers (Brachyury, Tbx20, and cTn1) and melatonin receptor (Mtnr1a) was reduced. The mRNA expression of cTn1 and the beating ratio of mESCs increased when melatonin was treated simultaneously with hypoxia, compared to when only exposed to hypoxia. Hypoxia-inducible factor (HIF)-1α protein decreased with melatonin treatment under hypoxia, and Mtnr1a mRNA expression increased. When the cells were exposed to hypoxia with melatonin treatment, the protein expressions of phospho-extracellular signal-related kinase (p-ERK) and Bcl-2-associated X proteins (Bax) decreased, however, the levels of phospho-protein kinase B (p-Akt), phosphatidylinositol 3-kinase (PI3K), B-cell lymphoma 2 (Bcl-2) proteins, and antioxidant enzymes including Cu/Zn-SOD, Mn-SOD, and catalase were increased. Competitive melatonin receptor antagonist luzindole blocked the melatonin-induced effects. Conclusions: This study demonstrates that hypoxia inhibits cardiomyocytes differentiation and melatonin partially mitigates the adverse effect of hypoxia in myocardial differentiation by regulating apoptosis and oxidative stress through the p-AKT and PI3K pathway.

Scratching Stimuli of Mycelia Influence Fruiting Body Production and ROS-Scavenging Gene Expression of Cordyceps militaris

  • Liu, Gui-Qing;Qiu, Xue-Hong;Cao, Li;Han, Ri-Chou
    • Mycobiology
    • /
    • v.46 no.4
    • /
    • pp.382-387
    • /
    • 2018
  • The entomopathogenic fungus Cordyceps militaris is a valuable medicinal ascomycete, which degenerates frequently during subsequent culture. To avoid economic losses during industrialized production, scratching stimuli of mycelia was introduced to improve the fruiting body production. The present results indicated that higher yields and biological efficiency were obtained from two degenerate strains (YN1-14 and YN2-7) but not from g38 (an insertional mutant in Rhf1 gene with higher yields and shorter growth periods). Furthermore, the growth periods of the fruiting bodies were at least 5 days earlier when the mycelia were scratched before stromata differentiation. Three ROS-scavenging genes including Cu/Zn superoxide dismutase (CmSod1), Glutathione peroxidase (CmGpx), and Catalase A (CmCat A) were isolated and their expression profiles against scratching were determined in degenerate strain YN1-14 and mutant strain g38. At day 5 after scratching, the expression level of CmGpx significantly decreased for strain g38, but that of CmSod1 significantly increased for YN1-14. These results indicated that scratching is an effective way to promote fruiting body production of degenerate strain, which may be related at least with Rhf1 and active oxygen scavenging genes.

THE CORRELATION BETWEEN AMYLIN AND INSULIN BY TREATMENT WITH 2-DEOXY-D-GLUCOSE AND/OR MANNOSE IN RAT INSULINOMA INS-1E CELLS

  • H.S. KIM;S.S. JOO;Y.-M. YOO
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.72 no.4
    • /
    • pp.517-528
    • /
    • 2021
  • Aamylin or islet amyloid polypeptide (IAPP) is a peptide synthesized and secreted with insulin by the pancreatic β-cells. A role for amylin in the pathogenesis of type 2 diabetes (T2D) by causing insulin resistance or inhibiting insulin synthesis and secretion has been suggested by in vitro and in vivo studies. These studies are consistent with the effect of endogenous amylin on pancreatic β-cells to modulate and/or restrain insulin secretion. Here, we reported the correlation between amylin and insulin in rat insulinoma inS-1e cells by treating 2-deoxy-ᴰ-glucose (2-DG) and/or mannose. Cell viability was not affected by 24 h treatment with 2-DG and/or mannose, but it was significantly decreased by 48 h treatment with 5 and 10 mm 2-DG. in the 24 h treatment, the synthesis of insulin in the cells and the secretion of insulin into the media showed a significant inverse association. in the 48-h treatment, amylin synthesis vs. the secretion and insulin synthesis vs. the secretion showed a significant inverse relation. The synthesis of amylin vs. insulin and the secretion of amylin vs. insulin showed a significant inverse relationship. The p-ERK, antioxidant enzymes (Cu/Zn-superoxide dismutase (SOD), Mn-SOD, and catalase), and endoplasmic reticulum (ER) stress markers (cleaved caspase-12, CHOP, p-SAPK/JNK, and BiP/GRP78) were significantly increased or decreased by the 24 h and 48 h treatments. These data suggest the relative correlation to the synthesis of amylin by cells vs. the secretion into the media, the synthesis of amylin vs. insulin, and the secretion of amylin vs. insulin under 2-DG and/or mannose in rat insulinoma INS-1E cells. Therefore, these results can provide primary data for the hypothesis that the amylin-insulin relationships may be involved with the human amylin toxicity in pancreatic beta cells.

A Study on Superoxide Dismutase from various Tissue of the Tricarboxylic acid cycle blocked Rat (Tricarboxylic acid회로를 차단한 흰쥐의 조직에서 Superoxide Dismutase에 관한 연구)

  • Kim, Yil
    • Korean Journal of Microbiology
    • /
    • v.23 no.1
    • /
    • pp.69-76
    • /
    • 1985
  • This study was carried out to observe the formation of superoxide radicals and the changes in the activities of superoxide dismutase (EC.1.15.1.1.) from the various organs of a rat which was blocked tricarboxylic acid cycle. In order to block the tricarboxylic acid cycle, the beta-fluoroethylacetate was injected into peritoneal cavity of rat and removed the various tissues from the rat at internals of an hour. By tissue extracts being prepared by the method of Weigiger and Fridovich the activities of superoxide dismutase, aconitase, and contents of bliid glucose, citrates, and wuperoxide radicals were determined. The experimental results are summarized as follows: Accumulation of citrates if increased within three hours after treatment in the all tested tissues, especially, in the geart and spleen they are higher than one of other tissues as 12 and 20 times of control. The activities of aconitase are ingibited to 30-35% on an hour after beta-fluoroethylacetate treatment comparing with that of control rat. The content of blood glucose is increased to 1.6 fold of normal value after 5 hours of treatment. In all tested tissues, superoxide radicals are formed in the heart as 0.26 micromoles per gram tissue between one and three hours after treatment. The activities of total superoxide dismutase are increased between one and three hours after treatment in the all tested tissues and one of these enzymes in heart is highest. The activities of superoxide dismutase containing Mn are also increased with an increase of total superoxide dismutase activities.

  • PDF

Enhanced Tolerance to Oxidative Stress of Transgenic Potato (cv. Superior) Plants Expressing Both SOD and APX in Chloroplasts (SOD와 APX를 동시에 엽록체에 발현시킨 형질전환 감자 (cv. Superior)의 산화스트레스 내성 증가)

  • Tang, Li;Kwon, Suk-Yoon;Kim, Myoung-Duck;Kim, Jin-Seog;Kwak, Sang-Soo;Lee, Haeng-Soon
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.299-305
    • /
    • 2007
  • Oxidative stress is a major damaging factor for plants exposed to environmental stresses. Previously, we have generated transgenic potato (cv. Superior) plants expressing both CuZnSOD and APX genes in chloroplast under the control of an oxidative stress-inducible SWPA2 promoter (referred to as SSA plants) and selected the transgenic potato plant lines with tolerance against methyl viologen (MV)-mediated oxidative stress. When leaf discs of SSA plants were subjected to $3{\mu}M$ methyl viologen (MV), they showed approximately 40% less damage than non-transgenic (NT) plants. SSA plantlets were treated with $0.3{\mu}M$ MV stress, SSA plants also exhibited reduced damage in root growth. When 350 MV was sprayed onto the whole plants, SSA plants showed a significant reduction in visible damage, which was approximately 75% less damage than leaves of NT plants. These plants will be used for further analysis of tolerance to environmental stresses, such as high temperature and salt stress. These results suggest that transgenic potato (cv. Superior) plants would be a useful plant crop for commercial cultivation under unfavorable growth conditions.

Antioxidative Responses of Transgenic Tobacco Plants Expressing both Superoxide Dismutase and Ascorbate Peroxidase in Chloroplasts to Several Herbicides (Superoxide Dismutase와 Ascorbate Peroxidase가 엽록체내로 동시에 과대발현된 형질전환 담배의 제초제들에 대한 항산화 반응)

  • Kim Jin-Seog;Lee Byung-Hoi;Kwon Suk-Yoon;Kim Yun-Hee;Kim So-Hee;Cho Kwang-Yun
    • Journal of Plant Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.97-103
    • /
    • 2005
  • Antioxidative responses of transgenic tobacco plants expressing both superoxide dismutase (SOD) and ascorbate peroxidase (APX) in chloroplasts was investigated with several herbicides. In greenhouse test, tolerance of SOD/APX-overexpressed tobacco (CA) to photosystem (PS) I inhibitor paraquat was increased by about 40%. However, any response differences between CA and wild type (WT) tobacco was not observed in a treatment with PS II inhibitors (bromoxynil, diuron and bromacil), chlorophyll biosynthesis inhibitor(oxyfluorfen), carotenoid biosynthesis inhibitor (fluridone) and 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase inhibitor (glyphosate). This tendency was also similar in the growth chamber test of low light intensity, using paraquat and diuron. That is, increased antioxidant activity of CA was shown only in paraquat treatment. When paraquat was foliar-treated to 6 to 9-leaf stage plant, the third to fourth placed leaf from shoot tip showed relatively higher antioxidant activity. Ascorbate supplemented to paraquat solution alleviated the phytotoxicity with a similar range in both CA and WT. In conclusion, CA specifically responded to oxidative stress induced by paraquat among tested herbicides in a whole plant assay.

Effects of Placing Micro-Implants of Melatonin in Striatum on Oxidiative Stress and Neuronal Damage Mediated by N-Methyl-D-Aspartate (NMDA) and Non-NMDA Receptors

  • Kim, Hwa-Jung;Kwon, Jin-Suk
    • Archives of Pharmacal Research
    • /
    • v.22 no.1
    • /
    • pp.35-43
    • /
    • 1999
  • Overstimulation of both kainate (KA) and N-methyl-D-aspartate (NMDA) receptors has been reported to induce excitatoxicity which can be characterized by neuronal damage and formation of reactive oxygen free radicals. Neuroprotective effect of melatonin against KA-induced excitotoxicity have been documented in vitro and in vivo. It is, however, not clear whether melationin is also neuroportective against excitotoxicity mediated by NMDA receptors. In the present work, we tested the in vivo protective effects of striatally infused melatonin against the oxidative stress and neuronal damage induced by the injection of KA and NMDA receptors into the rat striatum. Melatonin implants consisting of 22-gauge stainless-steel cannule with melatonin fused inside the tip were placed bilaterally in the rat brain one week prior to intrastriatal injection of glutamate receptor subtype agonists. Melatonin showed protective effects against the elevation of lipid peroxidation induced by either KA or NMDA and recovered Cu, Zn-superoxide dismutase activities reduced by both KA and NMDA into the control level. Melatonin also clearly blocked both KA- and NMDA-receptor mediated neuronal damage assessed by the determination of choline acetyltransferase activity in striatal monogenages and by microscopic observation of rat brain section stained with cresyl violet. The protective effects of melatonin are comparable to those of DNQX and MK801 which are the KA- and NMDA-receptor antagonist, respectively. It is suggested that melatonin could protect against striatal oxidative damages mediated by glutamate receptors, both non-NMDA and NMDA receptors.

  • PDF

Second locus for late-onset familial Amyotrophic Lateral Sclerosis (가족성 근위축성측삭경화증을 유발시키는 두 번째 유전자 위치)

  • 홍성출
    • Journal of Life Science
    • /
    • v.11 no.3
    • /
    • pp.279-283
    • /
    • 2001
  • Amyotrophic lateral sclerosis(ALS) is a progressive neurologic disorder resulting from the degeneration of upper and lower motor neurons, and is inherited in 10% of cases. About 20% of familial ALS, clinically indistinguishable from sporadic ALS, is caused by mutations of Cu/Zn superoxide dismutase on chromosome 21q22.21 inherited as an autosomal dominant trait. We now report a new locus in the non-SOD1 dominantly inherited ALS. We screened a large ALS family with 11 affected individuals and one obligate gene carrier with genome-wide ABI polymorphic markers using the ABI 377 automated system. No evidence of linkage was obtained with the autosomal markers. We next screened this family with X chromosome markers as there was no evidence of male-to-male tran-smission of the disease. Linkage was established with several X chromosome markers with a lod score up to 3.8; almost the maximum possible score in this family. Our finding imply that a gene for the dominant expression of a neuronal degeneration is coded on X chromosome and raise the question of the role of X-linked genes that escape inactivation in this pathogenesis. More importantly, our finding that a gene causing ALS is localized on X-chromosome has direct investigational relevance to sporadic ALS, where epidemiological studies show male gender predominance(1.3:1) and earlier onset in men by 5-10 years.

  • PDF