• Title/Summary/Keyword: CuAu-I type ordering

Search Result 2, Processing Time 0.017 seconds

Microstructure of Intermixed $Zn_{1-x}Fe_xSe$ Alloys in (ZnSe/FeSe) Superlattices ((ZnSe/FeSe) 초격자에 있어서 $Zn_{1-x}Fe_xSe$ 상호확산층의 미세구조)

  • Park, Kyeong-Soon
    • Applied Microscopy
    • /
    • v.27 no.3
    • /
    • pp.235-241
    • /
    • 1997
  • The microstructure of intermixed $Zn_{1-x}Fe_xSe$ layers in the (ZnSe/FeSe) superstrates grown on (00l) GaAs substrates has been investigated by high -resolution transmission electron microscopy and computer simulations of lattice images. Computer image simulations have been performed by the multislice method under various sample thicknesses and defocusing conditions. The simulated lattice images were compared with the experimental lattice images. Also, CuAu-I type ordering was often observed in the intermixed $Zn_{1-x}Fe_xSe$ alloys. This CuAu-I type ordered structure consists of alternating ZnSe and FeSe monolayers along the <100> and <110> directions.

  • PDF

Phase transformation and grain boundary precipitation related to the age-hardening of an Au-Ag-Cu-Pt-Zn alloy for crown and bridge fabrication (관교의치용 Au-Ag-Cu-Pt-Zn 합금의 시효경화성과 관련된 상변태와 입계석출)

  • Cho, Mi-Hyang
    • Journal of Technologic Dentistry
    • /
    • v.34 no.4
    • /
    • pp.345-352
    • /
    • 2012
  • Purpose: The age-hardening mechanism of an Au-Ag-Cu-Pt-Zn alloy for crown and bridge fabrication was investigated by means of hardness test, X-ray diffraction study and field emission scanning electron microscopic observation. Methods: Before hardness testing, the specimens were solution treated and then were rapidly quenched into ice brine, and were subsequently aged isothermally at $400-450^{\circ}C$ for various periods of time in a molten salt bath and then quenched into ice brain. Hardness measurements were made using a Vickers microhardness tester. The specimens were examined at 15 kV using a field emission scanning electron microscope. Results: By the isothermal aging of the solution-treated specimen at $450^{\circ}C$, the hardness increased rapidly in the early stage of aging process and reached a maximum hardness value. After that, the hardness decreased slowly with prolonged aging. However, the relatively high hardness value was obtained even with 20,000 min aging. By aging the solution-treated specimen, the f.c.c. Au-Ag-rich ${\alpha}_0$ phase was transformed into the Au-Ag-rich ${\alpha}_1$ phase and the AuCu I ordered phase. Conclusion: The hardness increase in the early stage of aging process was attributed to the formation of lattice strains by the precipitation of the Cu-rich phase and then subsequent ordering into the AuCu I-type phase. The decrease in hardness in the later stage of aging process was due to the release of coherency strains by the coarsening of tweed structure in the grain interior and by the growth and coarsening of the lamellar structure in the grain boundary. The increase of inter-lamellar space contributed slightly to the softening compared to the growth of lamellar structure toward the grain interior.