• Title/Summary/Keyword: Cu-ligands

Search Result 132, Processing Time 0.025 seconds

Delicate Difference in Coordinating Nature between Copper(II) and Nickel(II) Ions. Structural Properties of Copper(II) and Nickel(II) Nitrate Containing 1,2-Bis(dimethyl-3-pyridylsilyl)ethane

  • Kim, Shin-A;Kim, Chi-Won;Noh, Tae-Hwan;Lee, Young-A;Jung, Ok-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2158-2162
    • /
    • 2010
  • Studies on the molecular construction and structures of $M(NO_3)_2$ (M = Cu(II), Ni(II)) complexes with 1,2-bis(dimethyl-3-pyridylsilyl)ethane (L) have been carried out. Formation of each molecular skeleton appears to be primarily associated with a suitable combination of bidentate N-donors of L and coordinating nature of octahedral metal(II) ions: [$Cu(NO_3)_2(L)_2$] yields a 2-dimensional sheet structure consisting of 44-membered $Cu_4L_4$ skeleton whereas $[Ni(L)_2(H_2O)_2](NO_3)_2$ produces an interpenetrated 3-dimensional structure consisting of 66-membered cyclohexanoid ($M_6L_6$) skeleton. The Cu(II) ion prefers nitrate whereas the Ni(II) ion prefers water molecules as the fifth and the sixth ligands.

Studies on the Macrocycle-mediated Transport of Divalent Metal Ions in a Supported Liquid Membrane System

  • 조문환;신상철
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.1
    • /
    • pp.33-36
    • /
    • 1995
  • Macrocyclic ligands have been studied as cation carriers in a supported liquid membrane system. Cd2+ has been transported using nitrogen substituted macrocycles as carriers and several divalent metal ions (M2+=Zn, Co, Ni, Cu, Pb, Mg, Ca, and Sr) have been transported using DBN3O2, DBN2O2and PolyNtnoen as carriers in a supported liquid membrane system. Competitive Cd2+-M2+ transport studies have also been carried out with the same system. Ligand structure, stability constant, membrane solvent and carrier concentration are also important parameters in the transport of metal ions.

Structural and Magnetic Properties of Monomeric and Dimeric Copper(II) Complexes with Phenyl-N-[(pyridine-2-yl)methylene]methaneamide

  • Lee, Hong-Woo;Sengottuvelan, Nallathambi;Seo, Hoe-Joo;Choi, Jae-Soo;Kang, Sung-Kwon;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1711-1716
    • /
    • 2008
  • The reaction of copper(II) chloride with phenyl-N-[(pyridine-2-yl)methylene]methaneamide (ppmma) leads to a new $\mu$ -chloro bridged dimeric [Cu(ppmma)$Cl_2$]$_2$ complex, whereas a reaction of copper(II) bromide with ppmma affords a monomeric Cu(ppmma)$Br_2$ complex. Both complexes have been characterized by X-ray crystallography and electronic absorption spectroscopy. The crystal structural analysis of [Cu(ppmma)$Cl_2$]$_2$ shows that the two Cu(II) atoms are bridged by two chloride ligands, forming a dimeric copper(II) complex and the copper ion has a distorted square-pyramidal geometry ($\tau$ = 0.2). The dimer units are held through a strong intermolecular $\pi-\pi$ interactions between the nearest benzyl rings. On the other hand, Cu(ppmma)Br2 displayed a distorted square planar geometry with two types of strong intermolecular π-π interaction. EPR spectrum of [Cu(ppmma)$Cl_2$]$_2$ in frozen glas s at 77 K revealed an equilibrium between the mononuclear and binuclear species. The magnetic susceptibilities data of [Cu(ppmma)$Cl_2$]$_2$ and Cu(ppmma)$Br_2$ follow the Curie-Weiss law. No significant intermolecular magnetic interactions were examined in both complexes, and magnetic exchange interactions are discussed on the basis of the structural features.

전이금속 (Ru$^{3+}$, Ni$^{2+}$, Cu$^{2+}$, Pd$^{2+}$)-Polyaza(N$_4$) 착물의 합성과 올레핀 산화반응에 대한 촉매적 활성

  • Park, Yu Cheol;Kim, Seong Su;Na, Hun Gil;Lee, Dong Cheol;Sin, Sang Hui;Byeon, Jong Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.4
    • /
    • pp.295-301
    • /
    • 1994
  • The Ru(Ⅲ), Ni(Ⅱ), Cu(Ⅱ), and Pd(Ⅱ) complexes of N$_4$-polydentate ligands(meso-Me$_6$-[14]-ane, rac-Me$_6$-[14]-ane, and cyclam) have been prepared and their catalytic activity and selectivity in the oxidation of olefins in the presence of oxidant such as NaOCl, H$_2$O$_2$, t-BuOOH, and PhIO studied. The oxidations of cyclohexene, 1-hexene, cyclooctene, 1-octene, and styrene as substrates have been investigated gas chromatographically. The Ru(Ⅲ)-N$_4$ complexes showed high selectivity for epoxide in the catalyzed oxidation of olefins with NaOCl. The catalytic activities of Ru(Ⅲ)-N$_4$ complexes were discussed in terms of the flexibility of N$_4$-polydentate ligands, the Ru(Ⅲ)-Cl bond interaction and the steric effect of oxidants. The oxidation of 1-octene using PhIO as oxidant was carried out to verify. The Pd(Ⅱ) complex turned out to be more active catalyst than the Ni(Ⅱ) complexes.

  • PDF

Synthesis of Heptadentate Nitrogen-Oxygen Ligands (N4O3) with Substituting Groups and Determination of Stability Constants of Their Transition Metal(II) Complexes (치환기를 가진 일곱 자리 질소-산소(N4O3)계 리간드 합성과 전이금속(II) 이온 착물의 안정도상수 결정)

  • Kim, Sun-Deuk;Lee, Do-Hyub;Seol, Jong-Min
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.541-550
    • /
    • 2010
  • A new $N_4O_3$ heptadentate ligand, N,N'-Bis(2-hydroxybenzyl)-1,3-bis[(2-aminoethyl)amino]-2-propanol(H-BAP 4HCl)was synthesized. The hydrochloric acid salts of Br-BAP 4HCl, Cl-BAP 4HCl, $CH_3O$-BAP 4HCl and $CH_3$-BAP 4HCl containing Br-, Cl-, H-, $CH_3O-$ and $CH_{3^-}$ groups at the para-site of the phenol group of the H-BAP were synthesized. The structures of the ligands were confirmed by C. H. N. atomic analysis and $^1H$ NMR, $^{13}C$ NMR, UV-visible and mass spectra. The elemental stepwise protonation constants(${logK_n}^H$) of the synthesized $N_4O_3$ ligands showed six steps of the proton dissociation. The orders of the overall dissociation constants($log{\beta}_p$) of the ligands were Br-BAP < Cl-BAP < H-BAP < $CH_3O$-BAP < $CH_3$-BAP. The orders agreed well with that of Hammett substituent constants($\sigma_p$). The calculated stability constants($logK_{ML}$) between the ligands and transition metal ions agreed well with the order of the overall proton dissociation constants of the ligands but they showed a reverse order in Hammestt substituent constants($\sigma_p$). The order of the stability constants between the transition metal ions with the ligands were Co(II) < Ni(II) < Cu(II) > Zn(II) > Cd(II) > Pb(II).

Solvothermal Synthesis of Copper Indium Diselenide in Toluene

  • Chang, Ju-Yeon;Han, Jae-Eok;Jung, Duk-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.434-438
    • /
    • 2011
  • Polycrystalline $CuInSe_2$ (CIS) was synthesized through solvothermal reactions in toluene with selected alkyl amines as complexing agents. The alkyl amines were used as reducing agent of selenium and catalytic ligands, enhancing the formation of CIS compounds in the colloidal solution. Toluene does not contribute the syntheses directly but minimizes the amounts of amines required for single phase CIS. We systematically studied the reactivity of amine compounds for the solovothermal syntheses, determined critical concentration of amine and the shortest reaction time. Crystallinity, morphology, chemical composition, and band gap of the prepared $CuInSe_2$ were respectively measured by X-ray diffraction, scanning electron microscopy, inductively coupled plasma atomic emission spectroscopy and UV-vis spectroscopy.

Studies on the Heavy Metal Removal Characteristics of $FeS_(S)$ in the Presence of Organic Ligand (유기 리간드 존재하에서 $FeS_{(S)}$의 중금속 제거 특성 연구)

  • 박상원;박병주
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.411-417
    • /
    • 1999
  • The interfacial chemical behavior, lattice exchange and dissolution, of $FeS_{(S)}$ as one of the important sulfide minerals was studied. Emphases were made on the surface characterization of hydrous $FeS_{(S)}$, the lattice exchange of Cu(II) and $FeS_{(S)}$, and its effect on the dissolution of $FeS_{(S)}$, and also affect some organic ligands on that of both Cu(II) and $FeS_{(S)}$. Cu(II) which has lower sulfide solubility in water than $FeS_{(S)}$ undergoes the lattice exchange reaction when Cu(II) ion contacts $FeS_{(S)}$ in the aqueous phase. For heavy metals which have higher sulfide solubilities in water than $FeS_{(S)}$, these metal ions were adsorbed on the surface of $FeS_{(S)}$. Such a reaction was interpreted by the solid solution formation theory. Phthalic acid(a weak chelate agent) and EDTA(a strong chelate agent) were used to demonstrate the effect of organic lignads on the lattice exchange reaction between Cu(II) and $FeS_{(S)}$. The $pH_{zpc}$ of $FeS_{(S)}$ is 7 and the effect of ionic strength is not showed. It can be expected that phthalic acid has little effect on the lattice exchange reaction between Cu(II) and $FeS_{(S)}$. whereas EDTA has very decreased the removal of Cu(II) and $FeS_{(S)}$. This study shows that stability of sulfide sediments was predicted by its solubility. The pH control of the alkaline-neutralization process to treat heavy metal in wastewater treatment process did not needed. Thereby, it was regarded as an optimal process which could apply to examine a long term stability of marshland closely in the treatment of heavy metal in wastewater released from a disussed mine.

  • PDF

Structures and Magnetic Properties of Monomeric Copper(II) Bromide Complexes with a Pyridine-Containing Tridentate Schiff Base

  • Kang, Sung Kwon;Yong, Soon Jung;Song, Young-Kwang;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3615-3620
    • /
    • 2013
  • Two novel copper(II) bromide complexes with pyridine containing Schiff base ligands, $Cu(pmed)Br_2$ and $Cu(pmed)Br_2$ where pmed = N'-((pyridin-2-yl)methylene)ethane-1,2-diamine (pmed) and dpmed = N,N-diethyl-N'-((pyridin-2-yl)methylene)ethane-1,2-diamine (dpmed) were synthesized and characterized using X-ray single crystal structure analysis, optical and magnetic susceptibility measurements. Crystal structural analysis of $Cu(pmed)Br_2$ showed that the copper(II) ion has a distorted square-pyramidal geometry with the trigonality index of ${\tau}=0.35$ and two intermolecular hydrogen bonds, which result in the formation of two dimensional networks in the ab plane. On the other hand, $Cu(pmed)Br_2$ displayed a near square-pyramidal geometry with the value of ${\tau}=0.06$. In both compounds, the NNN Schiff base and one Br atom occupy the basal plane, whereas the fifth apical position is occupied by the other Br atom at a greater Cu-Br apical distance. The reported complexes show $g_{\mid}$ > $g_{\perp}$ > 2.0023 with a $d_{x2-y2}$ ground state and a penta-coordinated square pyramidal geometry. Variable temperature magnetic susceptibility measurements showed that the developed copper(II) complexes follow the Curie-Weiss law, that is there are no magnetic interactions between the copper(II) ions since the Cu--Cu distance is too far for magnetic contact.

Synthesis of New VO(II), Co(II), Ni(II) and Cu(II) Complexes with Isatin-3-Chloro-4-Floroaniline and 2-Pyridinecarboxylidene-4-Aminoantipyrine and their Antimicrobial Studies

  • Mishra, Anand P.;Mishra, Rudra;Jain, Rajendra;Gupta, Santosh
    • Mycobiology
    • /
    • v.40 no.1
    • /
    • pp.20-26
    • /
    • 2012
  • The complexes of tailor made ligands with life essential metal ions may be an emerging area to answer the problems of multi drug resistance. The coordination complexes of VO(II), Co(II), Ni(II) and Cu(II) with the Schiff bases derived from isatin with 3-chloro-4-floroaniline and 2-pyridinecarboxaldehyde with 4-aminoantipyrine have been synthesized by conventional as well as microwave methods. These compounds have been characterized by elemental analysis, molar conductance, electronic spectra, FT-IR, FAB mass and magnetic susceptibility measurements. FAB mass data show degradation of complexes. Both the ligands behave as bidentate and tridentate coordinating through O and N donor. The complexes exhibit coordination number 4, 5 or 6. The Schiff base and metal complexes show a good activity against the bacteria; $Staphylococcus$ $aureus$, $Escherichia$ $coli$ and $Streptococcus$ $fecalis$ and fungi $Aspergillus$ $niger$, $Trichoderma$ $polysporum$, $Candida$ $albicans$ and $Aspergillus$ $flavus$. The antimicrobial results also indicate that the metal complexes are better antimicrobial agents as compared to the Schiff bases. The minimum inhibitory concentrations of the metal complexes were found in the range 10-40 ${\mu}g/mL$.