• Title/Summary/Keyword: Cu-Sn bronze

Search Result 68, Processing Time 0.021 seconds

Provenance and Metallurgical Study on Bronze Mirrors Excavated from Mireuksaji Temple Site, Iksan (익산 미륵사지 출토 동경의 금속학적 연구 및 산지 추정)

  • Huh, Il-Kwon;Cho, Nam-Chul;Kang, Hyung-Tae
    • Journal of Conservation Science
    • /
    • v.20
    • /
    • pp.23-30
    • /
    • 2007
  • By analyzing the chemical compositions of bronze mirror presumably excavated from Mireuksaji temple site, Iksan, we have surveyed what alloy composition was used in casting the mirror, and also tried to estimate the manufacturing technique of the bronze mirror, through the observation of microstructure, as well as which region$^{\circ}{\emptyset}s$ galena the lead used in the mirror belonged to, by analyzing the ratio of the lead isotope. The content analysis result of bronze mirrors shows that it consists of 68.8 to 73.3wt% of Cu, 21.6 to 24.9wt% of Sn. In particular, the content of Pb of Mireuk 2 and 3 Samples are higher than those of Miruk 4. The observation result of microstructure demonstrates that Mireuk 2 and 3 consist of ${\alpha}$ and ${\alpha}+{\delta}$ eutectoide phase made through casting process. But Mireuk 4 show other process employed, such as quenching though martensite structure. In the analysis result of provenance though the lead isotope ratio, the origin of the used in bronze millers excavated from Mireuksaji temple site is presumed to be from galenas of Japen, like this those, the chemical competition, microstructure, and lead isotope ratio of bronze mirrors excavated from Mireuksaji can be utilized at fundamental data to compare mutually with other remains.

  • PDF

Transitions in Bronze Technology Observed in Bronze Artifacts Excavated from the Shilla Wang-Gyong (신라왕경 출토 청동유물에서 확인되는 청동기 제작기술의 변천)

  • Jeong, Young-Dong;Park, Jang-Shik
    • Korean Journal of Heritage: History & Science
    • /
    • v.37
    • /
    • pp.267-284
    • /
    • 2004
  • As an initial step to understand the transitions in Korean bronze technology the present study has examined metallurgical microstructures of 8 artifacts excavated from the Silla Wang-Gyong site in Kyongju. Important trends have been found in alloy compositions and also in manufacturing processes. In the design of alloys, the Sn content was apparently changing toward the peritectic point, 22 mass %, of the Cu-Sn phase diagram while the Pb addition was intentionally avoided. This trend in composition was found accompanied by the introduction, subsequent to casting, of such special thermo-mechanical treatments as quenching and forging in artifact manufacture. In addition, the Sn content in alloys containing a significant amount of As was relatively low and no evidence of forging was observed in them. The use of quenching and forging and the rejection of Pb and As from alloys are all necessary requirements if the brittle nature of high Sn alloys is to be overcome in bronze working. This paper will show that the Wang-Gyong era corresponds to that of innovations leading to the technical climax in Korean bronze tradition, which has been maintained up to the present.

Analysis of Bronze Artifacts and Gold Ornaments Excavated from Xiongnu Tombs No. 2~4 at Duurlig Nars in Mongolia (몽골 도르릭나르스 흉노 무덤 2~4호분 출토 청동 및 금제 유물 분석)

  • Yu, Hei-Sun
    • Journal of Conservation Science
    • /
    • v.28 no.2
    • /
    • pp.175-184
    • /
    • 2012
  • A purpose of this research is to find out characteristic of bronze artifacts and gold ornaments excavated from Xiongnu tombs No. 2~4 at Duurlig Nars in Mongolia through scientific analysis of them. The Tombs are comparatively small. There were still lots of relics remaining although the tombs had been already robbed. Also the tombs are evaluated important since the origin of them show coexisting of chinese and northern style. First of all, an analysis result about bronze vessels found in this site, they have high lead(Pb) content and relatively low tin(Sn) content, as compared with the Bronze Han Mirror and End-fittings of Bronze Parasol Rib. Especially in case of bronze tray and bronze lamp from the no. 2 tomb and also bronze cauldron from the no. 4 tomb contain only 1wt% of tin which means binary alloy composition(Cu-Pb). Also, in the case of gold ornaments found in the no. 2 tomb, they have comparatively high purity. And the research suppose that the high possibility of that they were used soldering using alloy of Au-Cu or diffused bonding(using malachite and copper oxide) for joining gold grains of gold granulation ornament. Further scientific research and analysis in Mongolia and other countries will provide more clues to solve mystery of Xiongnu culture.

Effects of Heat Treatment Temperature and Cooling Method on Microstructure and Hardness of Cu-22Sn alloy (열처리 온도 및 냉각방법이 Cu-22Sn합금의 미세조직 및 경도변화에 미치는 영향)

  • Jeong, Museob;Shin, Ari;Han, Jun Hyun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.3
    • /
    • pp.104-110
    • /
    • 2018
  • The effects of heat treatment time and cooling method on microstructure and mechanical property of Cu-22wt%Sn alloy were discussed. ${\alpha}+{\delta}$ mixed phase structure was obtained in air-cooled specimens after heat treatment at 775, 750, and $700^{\circ}C$ for 1 hour. On the other hand, in water-cooled specimens, ${\alpha}+{\beta}^{\prime}$ martensite mixed phase was obtained. In the case of water-cooled specimens, the hardness value decreased with decreasing heat treatment temperature because the volume fraction of ${\alpha}$ phase with low hardness value increased as the heat treatment temperature decreased. In water-cooled specimen after heat treatment at $600^{\circ}C$, ${\gamma}^{\prime}$ martensite was formed instead of ${\beta}^{\prime}$ martensite. The hardness value of ${\gamma}^{\prime}$ martensite was lower than those of ${\beta}^{\prime}$ and ${\delta}$ phases.

Effect of Melting and Pouring Conditions on Structures of Leaded Tin Bronze Castings (연청동주물(鉛靑銅鑄物)의 조직(組織)에 미치는 용해(熔解) 및 주입조건(鑄入條件)의 영향(影響)에 관한 연구(硏究))

  • Lee, W.W.;Choi, C.O.
    • Journal of Korea Foundry Society
    • /
    • v.7 no.1
    • /
    • pp.45-52
    • /
    • 1987
  • The effects of melting and casting conditions on cast structures of Cu-Sn-Pb alloys were studied. Specimens were prepared at different pouring temperatures of $1100^{\circ}C$ to $1260^{\circ}C$ with use of various kind of molds, green sand mold, $CO_2$ sand mold, shell mold, furan sand mold and metallic mold. (1) The transition of equiaxed to columnar structure greatly influenced by adding elements and mold binders. (2) The change of equiaxed structure according to pouring temperatures were expressed by separation theory. Lower pouring temperature and rapid cooling rate increase hardness and it's further increase was shown in the region of columnar structure. (3) Proper controls of pouring temperature, cooling rate and mold binder were important factors to improve wear properties of Cu-Sn-Pb alloys castings.

  • PDF

The Dry Sliding Wear Properties of $SiC_w$ and $SiC_p$ Reinforced Bronze Matrix Composites (무윤활 미끄럼 마찰하에서 SiC 휘스커 및 입자강화 청동기지 복합재의 마모특성)

  • 이상로;허무영
    • Tribology and Lubricants
    • /
    • v.9 no.2
    • /
    • pp.49-55
    • /
    • 1993
  • The dry sliding wear properties of the sintered Cu-10 wt%Sn bronze alloys reinforced with $SiC_w$ and $SiC_p$ were investigated by a pin-on-disc wear testing machine. The worn surfaces and the cross sections of the wear specimens and the wear debris were observed by SEM to study the effect of the variation of the ceramic phase contents in the composite and the wear condition on the wear behaviors. The wear of bronze matrix was dominated by the adhesive wear. The transition from mild to severe wear was found in the bronze matrix specimens at the applied load higher than 20N where the surface delamination caused the severe wear. The addition of $SiC_w$ and $SiC_p$ reinforcements in the romposites was proved to reduce the wear rate by the matrix strengthening at the applied load higher than 20N. SiC whiskers having a large length to diameter ratio which hold the deformed matrix were effective to hinder the crack propagation near the worn surface. Thus the maximum wear resistance was obtained in the composite reinforced by $SiC_w$ at the higher applied load.

Experimental Research of Piece-Mold Casting: Gilt-Bronze Pensive Bodhisattva

  • Yun, Yong-Hyun;Cho, Nam-Chul;Doh, Jung-Mann
    • Journal of Conservation Science
    • /
    • v.37 no.4
    • /
    • pp.340-356
    • /
    • 2021
  • We have tried the experimental research of lost-wax casting to reconstruct Gilt-Bronze Pensive Bodhisattva; preliminary and reconstruction experiment based on ancient texts. Main object to reconstruct is Korean National Treasure No.83, Gilt-Bronze Pensive Bodhisattva (Maitreya), then we measure alloy ratio and casting method based on the scientific analysis. Other impurities were removed from the base metal components(copper : tin : lead) and their ratio was set to 95.5 : 6.5 : 3 where the ratios for tin and lead were increased by 2.5% each. The piece-mold casting method was used, and piece-mold casting experiments were carried out twice in this study but supplementary research on piece-mold casting was necessary. The microstructure was confirmed to be typical cast microstructure and the component analysis result was similar to that of the prior study. Analysis of the chemical composition is confirmed to copper, tin, lead, and zinc, and the chemical composition of the matrix was 87.8%Cu-7.5%Sn-2.7%Pb-2.1%Zn, and similar to previous experimental research. Also resulted in the detection of small impurity in Zn. Analysis of the mould revealed that the mould was fabricated by adding quartz and organic matter for structural stability, fire resistance, and air permeability. We expect that our research will contribute to provide base data for advanced researches in future.

Investigation of the Internal Structure and Gold-thin Layer of the Gilt-bronze Seated Avalokitesvara Bodhisattva at Anseong Cheonryong Temple through the Non-destructive Analysis (비파괴 분석법을 통한 안성 청룡사 금동관음보살좌상 내부구조 및 금박층 조사)

  • Choi, Jung Eun;Choi, Hak
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.670-678
    • /
    • 2021
  • Anseong Cheonryongsa, a temple located in Anseong Seoun Mountain, is a part of the second Jogye Order of Korean Buddhism, under the Yongju Temple, and enshrines a gilt-bronze seated Avalokitesvara Bodhisattva. In this study, X-ray fluorescence (XRF) analysis revealed that this statue is composed of Cu-27.2 wt%, Sn-12.6 wt% and Pb-48 wt%. A gamma (γ) ray (Ir-192) image confirmed damage on the backside of the statue, which was later repaired with wood. The XRF analysis and visual observation determined the boundary between the metal and wood in the statue. In addition, results of standard X-ray peak intensity of gold foil and correlation with thickness helped to derive an equation for calculating the thickness of the Avalokitesvara Bodhisattva's gold foil. It was determined that the gilded chest (21 ㎛) and face (20.7 ㎛) of the statue were the thickest sections, the wooden substratum (11.9 ㎛) was the next-most thick, and the bronze (7.4 ㎛) was the thinnest layer.

Manufacturing Techniques of Bronze Seated Bodhisattva Statue of Goseongsa Temple in Gangjin (강진 고성사 청동보살좌상의 제작기술 연구)

  • LEE Seungchan;BAE Gowoon;CHUNG Kwangyong
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.1
    • /
    • pp.146-159
    • /
    • 2024
  • In this study, a study on the production technology of the Buddha statue and the production of raw material origin was conducted through scientific analysis on the Bronze seated Bodhisattva Statue of Goseongsa Temple, a treasure. As a result of microstructure analysis through a metal microscope, it was confirmed that the microstructure of the Bronze seated Bodhisattva Statue of Goseongsa Temple was a process-type dendritic structure, and the casting structure of bronze was well represented, so it was manufactured through casting. Subsequently, as a result of analyzing the alloy composition ratio through SEM-EDS, it was identified as a ternary alloy with 81.26 wt% of copper (Cu) and 16.42 wt% of tin (Sn) and 1.72 wt% of lead (Pb). The results of the analysis of lead isotope ratios using a thermal ionization mass spectrometer (TIMS) were substituted into the distribution of lead isotope ratios on the Korean Peninsula, it was shown in corresponding to Jeolla-do and Chungcheong-do regions and North and South Gyeongsang Province. This suggests that the raw materials used in their production were likely sourced from the mines around Goseong Temple in Gangjin. Despite the fact that the statue is a medium and large Buddha with a total height of 51 centimeters, 1.72 wt% of lead (Pb) was found as a result of alloy composition ratio analysis, which showed a similar composition to the lead content ratio of small bronze and gilt-bronze Buddha statues. Therefore, we compared and analyzed the results of the analysis of the composition ratio of the alloys of bronze and gilt bronze statues, which has been scientifically analyzed with a compositional age similar to that of the Bronze seated Bodhisattva Statue of Goseongsa Temple. Comparison results, Various factors, such as the size of the Buddha statue as well as its stylistic characteristics and the age of composition, may exist in determining the alloy composition ratio of the bronze and gilt bronze Buddha statues, and it was confirmed that the alloy composition ratio or casting technology was properly adjusted when the Buddha statue was created. In other words, it is judged that a more comprehensive system of Buddha statue production technology should be investigated by conducting archaeological and art history studies on stylistic characteristics and age of composition, as well as scientific analysis results such as observation of internal structure, microstructure observation, and analysis of alloy composition ratio using radiation transmission irradiation.

Friction and Wear Properties of Cu and Fe-based P/M Bearing Materials

  • Tufekci Kenan;Kurbanoglu Cahit;Durak Ertugrul;Tunay R. Fatih
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.513-521
    • /
    • 2006
  • The performances of porous bearings under different operating conditions were experimentally investigated in this study. Material groups studied are 90%Cu + 10%Sn bronze and 1%C + % balance Fe iron-based self-lubricating P/M bearings at constant (85%) density. In the experiments, the variation of the coefficient of friction and wear ratio of those two different group materials for different sliding speeds, loads, and temperatures were investigated. As a result, the variation of the friction coefficient-temperature for both constant load, and constant sliding speed, friction coefficient-average bearing pressure, PV-wear loss and temperature-wear loss curves were plotted and compared with each other for two materials, separately. The test results showed that Cu-based bearings have better friction and wear properties than Fe-based bearings.