• 제목/요약/키워드: Cu-Cr alloys

검색결과 55건 처리시간 0.023초

알루미늄 합금의 레이저 용접시 유기하는 플라즈마의 스펙트럼 분석 (Spectral Analyses of Plasma Induced by Laser Welding of Aluminum Alloys)

  • 김종도;최영국;김영식
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.292-300
    • /
    • 2001
  • The paper describes spectroscopic characteristics of plasma induces in the pulsed YAG laser welding of alloys containing a large amount of volatile elements. The authors have conducted the spectroscopic analyses of laser induced Al-Mg alloys plasma in the air and argon atmosphere. In the air environment, the identified spectra were atomic lines of Al, Mg, Cr, Mn, Cu, Fe and Zn, and singly ionized Mg lines, as well as the intense molecular spectra of A10 and Mg0 formed by chemical reactions of evaporated Al and Mg atoms from the pool surface with oxygen in the air. In argon atmosphere, Mg0 and AI0 spectra vanished, but AIH spectrum was detected. The hydrogen source was presumably hydrogen dissolved in the base metals, water absorbed on the surface oxide layer, or $H_2$ and $H_2O$ in the shielding gas. The resonant 1ines of Al and Mg were strongly self-absorbed, in particular, self-absorption of the Mg 1ine was predominant. These results show that the laser induced plasma was made of metal1ic vapor with relatively low temperature and high density.

  • PDF

Effect of REM Addition on The Surface Tension and The Critical Temperature of The Immiscible Liquid Phase Separation of The 60%Bi-24%Cu-16%Sn alloy

  • Park, Joong-Chul;Min, Soon-Ki;Lee, Joon-Ho
    • 한국재료학회지
    • /
    • 제19권2호
    • /
    • pp.111-114
    • /
    • 2009
  • For the fabrication of core-shell structure bimetallic lead-free solder balls, both the critical temperature ($T_{cr}$) for the phase separation of two immiscible liquid phases and the temperature coefficient of the interfacial tension between the two separated liquid phases are required. In order to obtain this information, the temperature dependence of the surface tension of 60%Bi-24%Cu-16%Sn(-REM) alloys was measured using the constrained drop method. The slope of the temperature dependence of the surface tension changed clearly at a critical temperature for the separation of two immiscible liquid phases. The critical temperature of the 60%Bi-24%Cu-16%Sn alloy was estimated to be 1097K. An addition of 0.05% Ce decreased the critical temperature to 1085K, whereas that of 0.05% La increased it to 1117K. It was found that the surface tension and its temperature coefficient of the 60%Bi-24%Cu-16%Sn alloy were slightly increased by the addition of 0.05% Ce and 0.05% La. In addition, additions of Ce and La increased the temperature coefficient of the interfacial tension.

펄스 YAG 레이저 용접시 유기하는 플라즈마의 스펙트럼선 동정과 발광특성 (Spectral Line Identification and Emission Characteristics of the Laser-Induced Plasma in Pulsed Nd:YAG Laser Welding)

  • 김종도
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권3호
    • /
    • pp.360-368
    • /
    • 1999
  • The paper describes spectroscopic characteristics of plasma induced in the pulsed YAG laser welding of alloys containing a large amount of volatile elements. The authors have conducted the spectroscopic analyses of laser induced Al-Mg alloys plasma in the air and argon atmosphere. In the air environment the identified spectra were atomic lines of Al, Mg, Cr, Mn, Cu, Fe and Zn and singly ionized Mg lines as well as the intense molecular spectra of ALO and MgO formed by chemi-cal reactions of evaporated Al and Mg atoms from the pool surface with oxygen in the air. In argon atmosphere MgO and AlO spectra vanished but AlH spectrum was detected. the hydrogen source was presumable hydrogen dissolved in the base metals water absorbed on the surface oxide layer or $H_2$ and $H_2O$ in the shielding gas. The resonant lines of Al and Mg were strongly self-absorbed in particular self-absorption of the Mg line was predominant. These results show that the laser induced plasma was made of metallic vapor with relatively low temperature and high density.

  • PDF

전력용 고온초전도 금속테이프 제작을 위한 첨단 레이저공정 개발 (Development of advanced laser processing for the fabrication of HTS metallic tapes for power applications)

  • 이상렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.688-691
    • /
    • 1997
  • Good quality superconducting $YBa_2Cu_30_{7-{\delta}}$(YBCO) thin films were grown on Hastelloy (Ni-Cr-Mo alloys) with yttria-stabilized zirconia(YSZ) buffer layers by in situ pulsed laser deposition in a multi-target processing chamber. Generally, Hastelloy exhibits excellent resistance to corrosion, fatigue, thermal shock, impact, and erosion. However, it is difficult to make films on flexible metallic substrates due to interdiffusion problems between metallic substrates and superconducting overlayers. To overcome this difficulty, it is necessary to use YSZ buffer layer since it will not only limit the interdiffusion process but also minimize the surface microcrack formation due to smaller mismatch between the film and the substrate. In order to enhance the crystallinity of YBCO films on metallic substrates, YSZ buffer layers were grown at various temperatures different from the deposition temperature of YBCO films. On YSZ buffer layer grown at higher temperature than that for depositing YBCO film, the YBCO thin film was found to be textured with c-axis orientation by x-ray diffraction and had a zero-resistance critical temperature of about 85K.

  • PDF

Goldish Yellow Color인 수종(數種)의 치과용(齒科用) 비귀금속합금(非貴金屬合金) 경도(硬度), 강도(强度) 및 미세조직(微細組織)의 비교(比較)에 관(關)한 연구(硏究) (A Study on the Comparison of hardness, Strength and Microstructure of dental Non-precious Metal Alloys Colored Goldish Yeller)

  • 김재도
    • 대한치과기공학회지
    • /
    • 제14권1호
    • /
    • pp.55-65
    • /
    • 1992
  • The purpose of this study was to investigate the comparison of physical properties of nonprecious metal alloys colored goldish yellow. The experimental groups were copper based dental alloy and control group was Ni-Cr based dental alloy used crown and bridges frameworks. Hardness was tested by vickers hardness tester, tensile strength was tested by universal tension tester. After testing the tensile strength of castings, the microstrucure and the pattern of fracture were investigated by scanning electron microscope and metallurgical microscope. The results were as follows : Hardness of Ni based alloy was higher than Cu based alloys. Hardness number of A group was 200.41$\pm$16.10 Hv, B group was 194.33$\pm$1.69 Hv, C group was 139.29$\pm$2.19 Hv and D group was 293.81$\pm$27.17 Hv, respectively. Tensile strength of D group was 56.42$\pm$6.17 $kg/m^2$, A group was 50.39$\pm$5.68 $kg/m^2$, C group was 45.13$\pm$4.53 $kg/m^2$, B group was 45.25$\pm$9.25 $kg/m^2$, in order, and D group was maximum tensile strength. The fractured surfaces of tensile specimens in the all groups showed the tendency to form large voids in the center of specimens. Thus the ductile fracture was changed into the brittle fracture with the fine grain size.

  • PDF

DIAGNOSTICS OF PLASMA INDUCED IN Nd:YAG LASER WELDING OF ALUMINUM ALLOY

  • Kim, Jong-Do;Lee, Myeong-Hoon;Kim, Young-Sik;Seiji Katayama;Akira Matsunawa
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.612-619
    • /
    • 2002
  • The dynamic behavior of Al-Mg alloys plasma was very unstable and this instability was closely related to the unstable motion of keyhole during laser irradiation. The keyhole fluctuated both in size and shape and its fluctuation period was about 440 ${\mu}{\textrm}{m}$. This instability has been estimated to be caused by the evaporation phenomena of metals with different boiling point and latent heats of vaporization. Therefore, the authors have conducted the spectroscopic diagnostics of plasma induced in the pulsed YAG laser welding of Al-Mg alloys in air and argon atmospheres. In the air environment, the identified spectra were atomic lines of Al, Mg, Cr, Mn, Cu, Fe and Zn, and singly ionized Mg line, as well as strong molecular spectrum of AlO, MgO and AIH. It was confirmed that the resonant lines of Al and Mg were strongly self-absorbed, in particular in the vicinity of pool surface. The self-absorption of atomic Mg line was more eminent in alloys containing higher Mg. These facts showed that the laser-induced plasma was relatively a low temperature and high density metallic vapor. The intensities of molecular spectra of AlO and MgO were different each other depending on the power density of laser beam. Under the low power density irradiation condition, the MgO band spectra were predominant in intensity, while the AlO spectra became much stronger in higher power density. In argon atmosphere the band spectra of MgO and AlO completely vanished, but AlH molecular spectra was detected clearly. The hydrogen source was presumably the hydrogen solved in the base Metal, absorbed water on the surface oxide layer or H$_2$ and $H_2O$ in the shielding gas. The temporal change in spectral line intensities was quite similar to the fluctuation of keyhole. The time average plasma temperature at 1 mm high above the surface of A5083 alloy was determined by the Boltzmann plot method of atomic Cr lines of different excitation energy. The obtained electron temperature was 3, 280$\pm$150 K which was about 500 K higher than the boiling point of pure aluminum. The electron number density was determined by measuring the relative intensities of the spectra1lines of atomic and singly ionized Magnesium, and the obtained value was 1.85 x 1019 1/㎥.

  • PDF

$CeO_2$의 상전이에 따른 YBCO 박막의 결정성 및 특성의 변화 (Effect of buffer layer on YBCO film deposited on Hastelloy substrate)

  • 김성민;이상렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.873-875
    • /
    • 1999
  • We have fabricated good quality superconducting $YBa_{2}Cu_{3}O_{7-\delta}$ thin films on Hastelloy(Ni-Cr-Mo alloys) metallic substrate with $CeO_2$ and $BaTiO_3$ buffer layers in-situ by pulsed laser deposition in a multi-target processing chamber. We have chosen $CeO_2$ as a buffer layer which has cubic structure of $5.41{\AA}$ lattice parameter and only 0.2% of lattice mismatch with YBCO. $CeO_2$ layer may be helpful for power transmission due to its conducting property. In order to enhance the crystallization of YBCO films on metallic substrates. we deposited $CeO_2$ and $BaTiO_3$ buffer layers at various temperatures. The YBCO superconducting tape fabricated with $BaTiO_3$ and $CeO_2$ buffer layers shows 85K of transition temperature and about $8.4{\times}10^4A/cm^2$ of critical current density at 77K.

  • PDF

$CeO_{2}/BaTiO_{3}$ 이중완충막을 이용한 YBCO 박막 제작 (Fabrication of YBCO superconducting film with $CeO_{2}/BaTiO_{3}$double buffer layer)

  • 김성민;이상렬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.790-793
    • /
    • 2000
  • We have fabricated good quality superconducting YBa$_2$Cu$_3$$O_{7-x}$(YBCO) thin films on Hastelloy(Ni-Cr-Mo alloys) metallic substrates with CeO$_2$and BaTiO$_3$buffer layers in-situ by pulsed laser deposition in a multi-target processing chamber. YBCO film with CeO$_2$ single buffer layer shows T$_{c}$ of 71.64 K and the grain size less than 0.1 ${\mu}{\textrm}{m}$. When BaTiO$_3$is used as a single buffer layer, the grain size of YBCO is observed to be larger than that of YBCO/CeO$_2$by 200 times and the transition temperature of the film is enhanced to be about 84 K. CeO$_2$/BaTiO$_3$double buffer layer has been adopted to enhance the superconducting properties, which results in the enhancement of the critical temperature and the critical current density to be about 85 K and 8.4 $\times$ 10$^4$ A/cm$^2$ at 77 K, respectively mainly due to the enlargement of the grain size of YBCO film.ilm.

  • PDF

$CeO_2$/$BaTiO_3$이중완충막을 이용한 YBCO 박막 제작 (Fabrication of YBCO Superconducting Film with $CeO_2$/$BaTiO_3$Double Buffer Layer)

  • 김성민;이상렬
    • 한국전기전자재료학회논문지
    • /
    • 제13권11호
    • /
    • pp.959-962
    • /
    • 2000
  • We have fabricated good quality superconducting YBa$_2$Cu$_3$$O_{7-x}$(YBCO) thin films on Hastelloy(Ni-Cr-Mo alloys) metallic substrates with CeO$_2$and BaTiO$_3$buffer layers in-situ by pulsed laser deposition in a multi-target processing chamber. YBCO film with CeO$_2$single buffer layer shows T$_{c}$ of 71.64 K and the grain size less than 0.1${\mu}{\textrm}{m}$. When BaTiO$_3$ is used as a single buffer layer, the grain size of YBCO is observed to be larger than that of YBCO/CeO$_2$by 200 times and the transition temperature of the film is enhanced to be about 84 K. CeO$_2$/BaTiO$_3$double buffer layer has been adopted to enhance the superconducting properties, which results in the enhancement of the critical temperature and the critical current density to be about 85 K and 8.4$\times$10$^4$ A/$\textrm{cm}^2$ at 77 K, respectively mainly due to the enlargement of the grain size of YBCO film.ilm.

  • PDF

HANA 지르코늄 핵연료피복관의 크립거동에 미치는 최종 열처리 및 응력의 영향 (Effect of Final Annealing and Stress on Creep Behavior of HANA Zirconium Fuel Claddings)

  • 김현길;김준환;정용환
    • 열처리공학회지
    • /
    • 제18권4호
    • /
    • pp.235-241
    • /
    • 2005
  • Thermal creep properties of the advanced zirconium fuel claddings named by HANA alloys which were developed for high burn-up application were evaluated. The creep test of HANA cladding tubes was carried out by the internal pressurization method in temperature range from 350 to $400^{\circ}C$ and in the hoop stress range from 100 to 150 MPa. Creep tests were lasted up to 800 days, which showed the steady-state secondary creep rate. The creep resistance of HANA fuel claddings was affected by final annealing temperature and various factors, such as alloying element, applied stress and testing temperature. From the results the microstructure observation of the samples before and after creep test by using TEM, the dislocation density was increased in the sample of after creep test. The Sn as an alloying element was more effective in the creep resistance than other elements such as Nb, Fe, Cr and Cu due to solute hardening effect of Sn. In case of HANA fuel claddings, the improved creep resistance was obtained by the control of final heat treatment temperature as well as alloying element.