• Title/Summary/Keyword: Cu-Cr alloys

Search Result 54, Processing Time 0.034 seconds

A Study of Cu-Cr Alloys (크롬동합금의 연구)

  • 김신우;김민기
    • Proceedings of the KAIS Fall Conference
    • /
    • 2000.10a
    • /
    • pp.34-35
    • /
    • 2000
  • 용접기의 전극에 사용되는 크롬동합금은 일반적으로 높은 전기전도도와 고온강도가 요구되어진다. 크롬동합금은 대표적인 시효경화합금으로 용체화처리와 시효처리를 통하여 최적의 성질들이 얻어진다. 본 연구에서는 Cu-0.6wt%Cr, Cu-1.2wt%Cr 합금을 이용하여 용체화처리온도, 시효처리온도 및 시간 등을 변화시켜 실험하였다. 각 열처리에 따른 전기전도도와 경도를 측정하고 미세구조를 조사하여 최적의 공정조건을 구하였다. Cr이 적은 Cu-0.6wt%Cr 합금이 경도의 큰 감소없이 더 높은 전기전도도를 나타내었다.

Properties of Aluminum Clad Sheets for Condenser Fins Fabricated with Transition Elements(Cu, Cr) added to Al-1.4Mn-1.0Zn Base Alloys (Cu, Cr 등 천이원소가 첨가된 Al-1.4Mn-1.0Zn 합금을 심재로 하여 제조된 콘덴서 핀용 알루미늄 클래드 박판의 특성)

  • Euh, K.;Kim, H.W.;Lee, Y.S.;Oh, Y.M.;Kim, D.B.
    • Transactions of Materials Processing
    • /
    • v.23 no.6
    • /
    • pp.386-391
    • /
    • 2014
  • In the current study, Al-Mn-Zn alloys are strip-cast and used as the base alloy for the core of aluminum clad sheets used in automotive condenser fins. Transition elements such as Cu and Cr are added to the base core alloy in order to improve the properties of the clad sheets. The AA4343/Al-Mn-Zn-X(X: Cu, Cr)/AA4343 clad sheets are fabricated by roll bonding and further cold-rolled to a thickness of 0.08 mm. Clad sheets were intermediately annealed during cold rolling at $450^{\circ}C$ in order to obtain 40% reduction at the final thickness. Tensile strength and sag resistance of the clad sheets are improved by Cu additions to the core alloy, while corrosion resistance is also increased. Cr-additions to the clad sheets enhance sag resistance and provide low enough corrosion, although tensile strength is not improved. The effect of Cu and Cr additions on the properties of the clad sheets is elucidated by microstructural analysis.

Effect of Cr Contents on Precipitation Process of Cu-Cr Alloys (크롬동합금의 시효석출거동에 미치는 Cr 첨가량의 영향)

  • Koo, B.H.;Chon, G.B.;Lee, C.G.;Kim, C.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.5
    • /
    • pp.305-311
    • /
    • 2005
  • Effect of Cr contents(Cr: 0.27, 0.45 and 0.65wt.%) on precipitation process has been studied by electrical resistivity measurements, hardness and scanning electron microscope. The first stage of the process consists of the formation of Cr-rich particles, the second stage consists of the competitive growth of these particles. The kinetics of precipitation could be described by Johnson-Mehl-Avrami equation, $f(t)=1-\exp(-kt^n)$. The values of n were found to be in the range from 0.17 to 0.39 at the first stage and from 1.0 to 1.5 at the second stage. The activation energies of Cu-Cr alloys were determined by Cross-Cut method and were 90~136 kJ/mol. The maximum hardness value of $H_RB$ 84 was obtained in Cu-0.65wt.%Cr alloy.

Densification of Cu-50%Cr Powder Compacts and Properties of the Sintered Compacts (Cu-50%Cr 분말성형체의 치밀화 및 소결체 물성)

  • 김미진;정재필;도정만;박종구;홍경태
    • Journal of Powder Materials
    • /
    • v.7 no.4
    • /
    • pp.218-227
    • /
    • 2000
  • It is well known that the Cu-Cr alloys are very difficult to be made by conventional sintering methods. This difficulty originates both from limited solubility of Cr in the Cu matrix and from limited sintering temperature due to high vapor pressures of Cr and Cu components at the high temperature. Densification of Cu-50%Cr Powder compacts by conventional Powder metallurgy Process has been studied. Three kinds of sintering methods were tested in order to obtain high-density sintered compacts. Completely densified Cu-Cr compacts could be obtained neither by solid state sintering method nor by liquid phase sintering method. Both low degree of shrinkage and evolution of large pores in the Cu matrix during the solid state sintering are attributed to the anchoring effect of large Cr particles, which inhibits homogeneous densification of Cu matrix and induces pore generation in the Cu matrix. In addition, the effect of undiffusible gas coming from the reduction of Cu-oxide and Cr-oxide was observed during liquid phase sintering. A two-step sintering method, solid state sintering followed by liquid phase sintering, was proved to have beneficial effect on the fabrication of high-dendsity Cu-Cr sintered compacts. The sintered compacts have properties similar to those of commercial products.

  • PDF

Microstructures and Mechanical Properties of Beryllium(Be)-free Ni-Cr-Mo based Alloys for Metal-Ceramic Crown (베릴륨(Be)이 미 첨가된 치과도재소부용 Ni-Cr-Mo계 합금의 미세조직 및 기계적 성질 특성)

  • Song, Kyung-Woo;Go, Eun-Kyoung;Lee, Jung-Hwan;Jung, Jong-Hyun;Noh, Hak;Han, Jae-Ick
    • Journal of Technologic Dentistry
    • /
    • v.28 no.2
    • /
    • pp.321-329
    • /
    • 2006
  • The popularity of Ni-Cr-Mo based metal alloys for metal-ceramic crown have increased recently because of low price, superior yield strength and rigidity. the use of these alloys give them the potential advantage of thinner copping with the required rigidity for long span bridges. The purpose of this study was to assess the microstructures and mechanical properties of Ni-Cr-Mo-(Si,Al,Nb,Zr,Ti.Cu,Mm) based Alloys not containing beryllium(Be) related toxic effects. The abtained results indicated that as-cast these specimen alloys showed compositional and microstructural differences, and mechanical properties values of Ni69Cr20Mo5Si2Al4 alloy among these specimen alloys was found to be superior to those of commercial Ni-Cr based alloy using in market place today.

  • PDF

Effects of Cr Content and Volume Fraction of δ-Ferrite on Thermal Cycling Fatigue Properties of Overlay Welded Heat-Resistant 12%Cr Stainless Steels (내열용 오버레이 12%Cr계 스테인레스강의 열피로 특성에 미치는 Cr 함량과 델타-페라이트의 영향)

  • Jung, J.Y.
    • Transactions of Materials Processing
    • /
    • v.26 no.6
    • /
    • pp.356-364
    • /
    • 2017
  • In this study, submerged arc cladded Fe-Cr-Ni-Mo-CuWNbV-C stainless steels containing various Cr contents between 11.2 wt.% and 16.7 wt.% were prepared with fixed C content at about 0.14 wt.%. Using these alloys, changes in microstructure, tensile property, and thermal fatigue property were investigated. Phase fraction of delta-ferrite was increased gradually with increasing Cr content. However, tensile strength, hardness, and thermal fatigue resistance appeared to be decreased. When the microstructure of delta-ferrite was observed, it was revealed that the mesh structure retained up to about 15% Cr content. Although thermal fatigue resistance was almost the same for Cr contents between 11.0 and 14.5 wt.%, it was significantly decreased at higher Cr contents. This was evident from mean value of crack lengths of 10 largest ones. Evaluation of thermal fatigue resistance on alloys with various Cr contents revealed the following important results. First, the reproducibility of ranking test was excellent regardless of the number of cycles. Second, thermal fatigue resistance was increased in proportion to true tensile fracture strength values of overlay materials. Finally, the number of thermal fatigue cracks per unit length was increased with increasing true tensile fracture strength.

A Study on the Solidification Structure in the Al-Cr Alloys (Al-Cr계 합금의 응고 조직에 관한 연구)

  • 배석천;조순형
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.46-54
    • /
    • 1995
  • The structural changes of Al-Cr alloys due to the difference in the growth rates were investigated in the study using the water cooled copper chill apparatus, the levitation apparatus, and the melt spinner. Growth rate was evaluated by means of thermal analysis could measured the cooling rate up to 10$^{5}$ K/sec. The transformation from the cell structure to the massive transformed structure was obtained the Al-3.43wt%Cr alloy in the melt spinner method.

  • PDF

An experimental study of the strength and internal structure of solder joint of fixed partial denture (가공의치(架工義齒) 납착부(蠟着部)의 강도(强度)와 내부구조(內部構造)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Park, Sang-Nam;Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.23 no.1
    • /
    • pp.39-59
    • /
    • 1985
  • The purpose of this study was to investigate how gap distances of 0.13mm, 0.15mm, 0.20mm, and 0.30mm affects solder joint strength from gold alloys and nickel-chromium base alloys and to examine the composition of solder gold, the solder joint of gold alloys and nickel-chromium base alloys. The tensile test specimens were prepared in the split stainless steel mold with a half dumbbell shape 2.5mm in diameter and l2mm in length. 6 pairs of specimens of each gap distance group of gold alloys and nickel-chromium base alloys were made and 48 pairs of all specimens were soldered with solder gold of 666 fineness. All soldered specimens were machined to a uniform diameter and then a tensile load was applied at a cross-head speed of 0.10mm/min using Instron Universal Testing Machine, Model 1115. The fractured specimens at solder gold of solder joint fracture with each gap distance of 0.13mm, 0.15mm, 0.20mm, and 0.30mm were examined under the Scanning Electron Microscope, JSM-35c and the composition of solder gold, the solder joint of gold alloys and nickel-chromium base alloys was analyzed by Electron Probe Micro Analyzer. The results of this study were obtained as follows: 1. In case of soldering of gold alloys, the tensile strength between gold alloys showed $37.33{\pm}2.52kg/mm^2$ at 0.13, $39.14{\pm}3.35kg/mm^2$ at 0.15mm, $43.76{\pm}2.97kg/mm^2$ at 0.20mm, and $49.18{\pm}4.60kg/mm^2$ at 0.30mm. There was statistically significant difference at each gap distance, and so the greater increase of gap distance showed the greater tensile strength. 2. In case of soldering of nickel-chromium base alloys, the tensile strength between nickel-chromium base alloys showed $34.84{\pm}4.26kg/mm^2$ at 0.13mm, $37.25{\pm}2.49kg/mm^2$ at 0.15mm, $42.91{\pm}4.32kg/mm^2$ at 0.20mm, and $46.93{\pm}4.21kg/mm^2$ at 0.30mm. There was not statistically significant difference only between 0.13mm and 0.15mm and bet ween 0.20 mm and 0.30mm, but generally the greater increase of gap distance showed the greater tensile strength. 3. The greater increase of gap distance shoed less porosities in solder gold at solder joint fracture. 4. In solder gold Au, Cu, Ag, Zn, and Sn were composed and Au and Cu were mostly distributed uniformly. 5. In solder joints of solder gold and gold alloys Au, Cu, Ag, Zn, and Sn were composed in solder gold and Au, Cu, Ag, Pt, and Pd were composed in gold alloys. Au and Cu of solder gold and gold alloys were mostly distributed uniformly and the diffusion of other elements except Pt and Pd around the solder joint was not almost found. In solder joints of solder gold and nickel-chromium base alloys Au, Cu, Ag, Zn, and Sn were composed in solder gold and Ni, Cr, and Al were composed in nickel-chromium base alloys. Au and Cu of solder gold and Ni and Cr of nickel-chromium base alloys were mostly distributed uniformly and the diffusion of other elements except Cr around the solder joint was not almost found.

  • PDF

Effect of Carbon on Wear Resistance in Self-lubricating Fe-Cr-C-Mn-Cu Alloys

  • Kim, Ki Nam;Shin, Gyeong Su;Park, Myung Chul;Lee, Sung Yong;Yun, Jae Yong;Kim, Seon Jin
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.637-643
    • /
    • 2012
  • Recently, because of safety and environmental concerns, there has been a tendency to introduce solid self-lubricating composites for bearing materials. In this paper, we developed Fe-Cr-C-Mn-Cu cast composite alloys as a self-lubricating composite and investigated the effect of carbon on the formation of protective tribofilms during sliding. The wear resistance of these materials was mainly affected by carbon concentrations due to the fact that in particular wear passed from delamination to tribo-oxidation, reducing the wear rate. The improved wear resistance likely resulted from protective tribofilms that formed on the surface during sliding.