• Title/Summary/Keyword: Cu-10Sn

Search Result 549, Processing Time 0.025 seconds

Effects of Tempering Temperature and Time on Microstructure and Mechanical Property of Cu-Sn Alloy (Cu-Sn합금의 미세조직과 기계적 특성에 미치는 템퍼링 온도 및 시간의 영향)

  • Jeong, Museob;Lee, Hohyung;Han, Jun Hyun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.2
    • /
    • pp.65-71
    • /
    • 2020
  • To study the effects of tempering on microstructure and mechanical property of Cu-22 wt.%Sn alloy, tempering was carried out for 30 sec, 1 min, 5 min, 30 min, 3 h, 5 h, and 10 h at 325, 370, 500, and 570℃, which are in the (α+ε), lower (α+δ), higher (α+δ), and (α+γ) region of Cu-Sn phase diagram, respectively. Overall, the hardness value increased and decreased over time at all tempering temperatures, and the time to reach the maximum hardness value beccame shorter as the tempering temperature increases. At the beginning of tempering at each temperature, a portion of the β' phase was decomposed into a fine (α+δ) phase or (α+γ) phase, so that the Cu-22Sn alloy had a high hardness value. However, as the tempering time increases, the hardness value of the alloy decreased due to the growth of the decomposed phases.

Fabrication of Cu2ZnSnS4 Films by Rapid Thermal Annealing of Cu/ZnSn/Cu Precursor Layer and Their Application to Solar Cells

  • Chalapathy, R.B.V.;Jung, Gwang Sun;Ko, Young Min;Ahn, Byung Tae;Kwon, HyukSang
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.82-89
    • /
    • 2013
  • $Cu_2ZnSnS_4$ thin film have been fabricated by rapid thermal annealing of dc-sputtered metal precursor with Cu/ZnSn/Cu stack in sulfur ambient. A CZTS film with a good uniformity was formed at $560^{\circ}C$ in 6 min. $Cu_2SnS_3$ and $Cu_3SnS_4$ secondary phases were present at $540^{\circ}C$ and a trace amount of $Cu_2SnS_3$ secondary phase was present at $560^{\circ}C$. Single-phase large-grained CZTS film with rough surface was formed at $560^{\circ}C$. Solar cell with best efficiency of 4.7% ($V_{oc}=632mV$, $j_{sc}=15.8mA/cm^2$, FF = 47.13%) for an area of $0.44cm^2$ was obtained for the CZTS absorber grown at $560^{\circ}C$ for 6 min. The existence of second phase at lower-temperature annealing and rough surface at higher-temperature annealing caused the degradation of cell performance. Also poor back contact by void formation deteriorated cell performance. The fill factor was below 0.5; it should be increased by minimizing voids at the CZTS/Mo interface. Our results suggest that CZTS absorbers can be grown by rapid thermal annealing of metallic precursors in sulfur ambient for short process times ranging in minutes.

Gas Sensing Behaviors of SnO2:Cu Nanostructures for CH4, CH3CH2CH3 Gas (SnO2:Cu 나노 구조물의 CH4, CH3CH2CH3 가스 감응 특성)

  • Lee, Ji-Young;Yu, Yoon-Sic;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.974-978
    • /
    • 2012
  • The effect of Cu coating on the sensing properties of nano $SnO_2:Cu$ based sensors for the $CH_4$, $CH_3CH_2CH_3$ gas was studied. This work was focussed on investigating the change of sensitivity of nano $SnO_2:Cu$ based sensors for $CH_4$, $CH_3CH_2CH_3$ gas by Cu coating. Nano sized $SnO_2$ powders were prepared by solution reduction method using stannous chloride($SnCl_2{\cdot}2H_2O$), hydrazine($N_2H_2$) and NaOH and subsequent heat treatment. XRD patterns showed that nano $SnO_2$ powders with rutile structure were grown with (110), (101), (211) dominant peak. The particle size of nano $SnO_2:Cu$ powders at 8 wt% Cu was about 50 nm. $SnO_2$ particles were found to contain many pores, according to SEM analysis. The sensitivity of nano $SnO_2:Cu$ based sensors was measured for 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature by comparing the resistance in air with that in target gases. The sensitivity for both $CH_4$ and $CH_3CH_2CH_3$ gases was improved by Cu coating on the nano $SnO_2$ surface. The response time and recovery time of the $SnO_2:Cu$ gas sensors for the $CH_4$ and $CH_3CH_2CH_3$ gases were 18~20 seconds, and 13~15 seconds, respectively.

Effect of Sn Addition on the SCC Properties of Al-Cu-Mn Cast Alloy (Al-Cu-Mn 주조합금의 SCC 특성에 미치는 Sn 첨가의 영향)

  • Kim, Kwang-Nyeon;Kim, Kyung-Hyun;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.436-441
    • /
    • 2002
  • Effect of Sn addition on the stress corrosion cracking(SCC) resistance of the Al-Cu-Mn cast alley was investigated by C-ring teat and electrical conductivity measurement, The electrical conductivity and SCC resistance increased by Sn addition. The alley containing 0,10%Sn showed maximum electrical conductivity and the best SCC resistance. At the same composition, the electrical conductivity and SCC resistance increased from peak aged condition to ever aged condition. The PFZ and coarse precipitates along the grain boundary were observed from TEM micrographs. The fracture mode of the alloy was confirmed as intergranular type and showed brittle fracture surface. The SCC mechanism of the alloy was concluded as the anodic dissolution model, The maximum hardness was increased from 130Hv in the Sn-free alloy to 156Hv in the 0.10%Sn added alloy.

Impact Resistance Reliability of Sn-1.2Ag-0.5Cu-0.4In Solder Joints (Sn-1.2Ag-0.5Cu-0.4In 조성 솔더 접합부의 내 충격 신뢰성 평가)

  • Yu, A-Mi;Lee, Chang-Woo;Kim, Jeong-Han;Kim, Mok-Soon;Lee, Jong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.226-226
    • /
    • 2008
  • 지난 10여년 동안 Sn-3.0Ag-0.5(wt%)Cu 합금은 대표 무연솔더 조성으로 다양한 전자제품의 실장 및 접합에 적용되어 왔으며, 그 신뢰성 역시 충분히 검증된 바 있다. 그러나 최근 Ag 가격의 급격한 상승과 솔더 접합부의 내 충격 신뢰성을 보다 향상시키고자 하는 업계의 동향은 Ag의 함량이 낮은 무연솔더 조성의 적용 확대를 유도하고 있다. 이에 따라 본 연구자들은 저 Ag 함유 무연슬더로 Sn-1.2Ag-0.5Cu-0.4In 조성을 제안한 바 있는데, 이는 Sn-3.0Ag-0.5Cu 조성 이상의 solderability를 가지면서도 그 금속원료 가격이 약 20% 가량 저렴한 특징을 가진다. 또한 열 싸이클링 (cycling) 테스트를 통한 슬더 조인트의 신뢰성을 평가한 결과, Sn-3.0Ag-0.5Cu에 크게 뒤떨어지지 않는 양호한 특성이 관찰되었다. 따라서 본 연구에서는 열 싸이클링 테스트와 더불어 최근 그 중요성이 지속적으로 커지고 있는 내 충격 신뢰성 평가 시험을 실시하여 개발된 4원계 무연솔더 조성의 기계적 특성을 기존 무연솔더 조성과 비교, 분석해 보았다. 각 솔더 조성은 솔더 볼 형태로 제조되어 CSP(Chip Scale Package) 상에 범핑 (bumping)되었으며, CSP를 PCB(Printed Circuit Board) 상에 실장하는 공정에서도 Sn-3.0Ag-0.5Cu 및 Sn-1.2Ag-0.5Cu-0.4In의 두 종류의 솔더 페이스트가 사용되었다. 본 연구에서의 내 충격 신뢰성 시험에는 자체 제작한 rod drop 시험기를 사용하였는데, 고정된 CSP 실장 board의 후면 부위를 일정한 높이에서 추를 반복적으로 자유 낙하시켜 급격한 충격을 주는 방식으로 실험을 실시하였다. 이 때 추의 무게는 30g, 낙하 높이는 10cm 였으며, 추의 낙하 시 측정된 board 의 휨 변위량은 약 0.7mm로 측정되었다. 사용된 CSP와 PCB 는 모두 daisy chain 방식으로 연결되어 있기 때문에 저항측정기를 사용한 간단한 실시간 저항 측정 방법으로 시험 이력에 따른 파단부의 발생 시점과 대략의 위치를 손쉽게 확인할 수 있었다. 솔더 조인트의 파단 기준 저항값으로 $1000\Omega$을 설정하였으며. 각 조건 당 5 개 이상의 샘플에 대해 평가를 실시한 후 그 평균값을 조사하였다. 시험 결과 제안된 Sn-1.2Ag-0.5Cu-0.4In 조성은 대표적인 저 Ag 함유 조성인 Sn-1.0Ag-0.5Cu에 비해서는 떨어지는 내 충격 신뢰성을 나타내었지만, 우수한 연성에 기인하여 Sn-3.0Ag-0.5Cu 조성에 비해서는 약 2 배 이상 우수한 신뢰성이 관찰되었다. 또한 CSP의 실장 시 Sn-3.0Ag-0.5Cu보다 Sn-1.2Ag-0.5Cu-0.4In 조성 솔더 페이스트를 적용한 경우에서 보다 우수한 내 충격 신뢰성을 나타내어 기본적으로 개발된 Sn-1.2Ag-0.5Cu-0.4In 솔더 페이스트가 Sn-3.0Ag-0.5Cu 조성의 기존 솔더 페이스트 보다 내 충격 신뢰성이 우수함을 검증할 수 있었다. 각 조성의 솔더 조인트를 $150^{\circ}C$ 에서 500시간 aging한 후 실시한 내 충격 신뢰성 평가에서는 모든 조성에서 그 신뢰성이 급감하는 경항을 나타내었으나, Sn-1.2Ag-0.5Cu-0.4In가 Sn-l.0Ag-0.5Cu보다도 그 상대적인 신뢰성이 우수한 것으로 관찰되었다. 이와 같이 aging 후 실시하는 충격시험은 가장 실제적인 상황과 유사한 조건이므로 상기의 실험 결과는 매우 고무적이었으며, 이에 대한 보다 면밀한 분석이 요청되었다. 마지막으로 파면 및 미세조직 관찰을 통하여 각 조성에서의 충격 파단 특성을 비교, 분석해 보았다.

  • PDF

Characterization of the Cu-layer deposition time on Cu2ZnSnS4 (CZTS) Thin Film Solar Cells Fabricated by Electro-deposition (Cu층 증착시간에 따른 Cu2ZnSnS4 (CZTS) 박막의 특성)

  • Kim, Yoon Jin;Kim, In Young;Gang, Myeng Gil;Moon, Jong Ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.4 no.1
    • /
    • pp.16-20
    • /
    • 2016
  • $Cu_2ZnSnS_4$ (CZTS) thin films were fabricated by successive electrodeposition of layers of precursor elements followed by sulfurization of an electrodeposited Cu-Zn-Sn precursor. In order to improve quality of the CZTS films, we tried to optimize the deposition condition of absorber layers. In particular, I have conducted optimization experiments by changing the Cu-layer deposition time. The CZTS absorber layers were synthesized by different Cu-layer conditions ranging from 10 to 16 minutes. The sulfurization of Cu/Sn/Zn stacked metallic precursor thin films has been conducted in a graphite box using rapid thermal annealing (RTA). The structural, morphological, compositional, and optical properties of CZTS thin films were investigated using X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and X-ray Flourescenece Spectrometry (XRF). Especially, the CZTS TFSCs exhibits the best power conversion efficiency of 4.62% with $V_{oc}$ of 570 mV, $J_{sc}$ of $18.15mA/cm^2$ and FF of 45%. As the time of deposition of the Cu-layer to increasing, the properties were confirmed to be systematically changed. And we have been discussed in detail below.

Joint Property of Sn-Cu-Cr(Ca) Middle Temperature Solder for Automotive Electronic Module (자동차 전장모듈용 Sn-Cu-Cr(Ca) 중온 솔더의 접합특성 연구)

  • Bang, Junghwan;Yu, Dong-Yurl;Ko, Yong-Ho;Kim, Jeonghan;Lee, Chang-Woo
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.54-58
    • /
    • 2013
  • Joint properties of vehicle ECU (Electric Control Unit) module which was manufactured by using Sn-Cu-Cr-Ca alloy were investigated. A new solder which has a middle melting temperature about $231^{\circ}C$ was fabricated as the type of 300um solder ball and paste type. The prototype modules were made by reflow process and measured spreadability, wettability shear strength and estimated interface reaction. The spreadability of the alloy was about 84% from the measurement of contact angle of the solder ball and the wetting force was measured 2mN. The average shear strength of the module which was manufactured by using the solder paste, was 1.9 $kg/mm^2$. Also, the thickness of IMC(intermetallic compound) was evaluated with various aging temperature and time in order to understand Cr effect on Sn-0.7Cu solder. $Cu_6Sn_5$ IMC was formed between Cu pad and the solder alloy and the average thickness of the $Cu_6Sn_5$ IMC was measured about 4um and it was about 50% of thickness of $Cu_6Sn_5$ IMC in Sn-0.7Cu. It is expected to have a positive effect on reliability of the solder joint.

The properties and processing of Bismuth and Indium added Sn-Cu-Ni solder alloy system (Bi, In을 함유한 Sn-Cu-Ni계 솔더 합금 제조와 물성)

  • 박종원;최정철;최승철
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.189-192
    • /
    • 2002
  • Sn-Cu-Ni계 솔더 합금에 소량의 Bi와 In을 첨가하여 새로운 무연솔더 합금 개발을 진행하였다. Sn-0.7%(Cu+Ni)에 2~5% Bi, 2~10% In을 첨가하여 각각의 열적, 전기적, 기계적 특성을 평가하였다. 솔더합금의 융점은 200~222$^{\circ}C$, 응고온도범위는 20~37$^{\circ}C$로 중.고온계 솔더로서 적용이 가능하다. 실험 조성별 솔더 합금중 실용적, 경제적인 면을 고려하여 Sn-0.7%(Cu+Ni)-3.5%Bi-2%In이 최적의 합금조성으로 판단된다. 이 합금은 융점이 22$0^{\circ}C$정도이며 응고범위는 $25^{\circ}C$, 강도 면에서는 타 합금에 비해 상당히 우수한 값을 나타내었으며 연신율은 비교적 낮은 값을 나타내었다. 다른 기계적, 전기적 특성은 타 솔더 합금과 유사하거나 우수한 편이었으며 젖음특성도 양호하였다.

  • PDF

A Study on Characteristics of Alloy Materials through Reproduction Experiment of High-tin Bronze Mirror with Geometric Designs (고주석 청동정문경(靑銅精文鏡)의 재현실험을 통한 합금재료의 특성 연구)

  • Lee, In Kyeong;Jo, Young Hoon;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.35 no.5
    • /
    • pp.508-517
    • /
    • 2019
  • This study analyzed on alloys and by-product samples produced through the reproduction experiment of bronze mirror with geometric designs. The alloy ratio used in the first and second reproduction experiments was based on the analysis results of bronze mirror with geometric designs(Cu 61.68%, Sn 32.25%, Pb 5.46%) which is the national treasure No. 141. As a result of portable X-ray fluorescence analysis on the raw materials used in the reproduction experiment, the contents of copper raw materials were 98.85 wt% for Cu, tin raw materials were 99.03 wt% for Sn, and lead raw materials were 70.19 wt% for Pb, and 21.81 wt% for Sn. Sn and Pb were added 5 wt% more considering the evaporation amount of tin and lead during alloy melting. The result produced by the first reproduction experiment were 58.75 wt% for Cu, 36.87 wt% for Sn, 4.39 wt% for Pb, and the other result produced by the second reproduction experiment were 58.66 wt% for Cu, 35.89 wt% for Sn, and 5.50 wt% for Pb. The composition of the components was about 3.00 wt% in Cu and Sn respectively, and the microstructure was similar to the previous studies because the δ phase was observed mainly. The results of this study will be used as basic data for the materialistic characteristics of ancient bronze mirror in the future.

Study on quantitative & trace element analysis of metal objects (고대 청동기의 성분조성 및 산지추정 연구)

  • Chung, Kwang-Yong;Kang, Hyung-tae;Chong, Dong-Chan;Yun, Yong-hyun;Lee, Hoon
    • 한국문화재보존과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.137-153
    • /
    • 2004
  • We have analyzed the ingredients of 17 pieces of Bronze Age bronze ware, and an additional 22 pieces of Koryo and Chosun dynasty bronze ware. We have also conducted analysis of the extraction sites where these bronze ware items were found. For analyzing the main ingredient the bronze ware items have been divided into 3 groups - Cu-Sn(70?75:20), Cu-Pb-Sn(70:10:10), Cu-Pb-Sn(60:10:20) type respectively. In tile cases of the Cu-Pb-Sn groups the division comes down to differences in the Cu content as the main component, and elements such as Ni, Fe, Co contribute as a micro ingredient. The geographical and periodic characteristics of ancient bronze ware items show that theircompositional element changes from Cu:Sn to Cu:Pb:Sn and the Cu content decreases with the period,while the Pb content increases with the period. Bronze ware items from Suchon Ri, Gongju (that were used in 3 B.C.) form very different categories from 3rd ${\~}$ 2nd B.C.. They additionally formed very different categories from those bronze ware items analyzed in this research. These bronze ware itemsare shown to be geographically close and periodically overlapped, but made of a new elemental composition. This shows an inflow of a production technical culture present in the new bronze wares. The main component content of Cu is lower, and the Co and Fe contents (as microelements) are much higher than that of other bronze ware items. Such facts showthat those bronze ware items used completely different materials from bronze ware items in other cultural areas, or that there were differences in smelting techniques In the places where ancient bronze ware items have been extracted, it is presumed that the materials originated from the southern parts of Korea andnorthern parts and southern parts of China. .As more bronze ware scientific research is compiled one can conclude that that there will be enough scientific evidence to study the Bronze Age culture of Koreasystematically.

  • PDF