• Title/Summary/Keyword: Cu-10Sn

Search Result 549, Processing Time 0.026 seconds

Bandgap Engineering in CZTSSe Thin Films via Controlling S/(S+Se) Ratio

  • Vijay C. Karade;Jun Sung Jang;Kuldeep Singh, Gour;Yeonwoo Park;Hyeonwook, Park;Jin Hyeok Kim;Jae Ho Yun
    • Current Photovoltaic Research
    • /
    • v.11 no.3
    • /
    • pp.67-74
    • /
    • 2023
  • The earth-abundant element-based Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cells (TFSCs) have attracted greater attention in the photovoltaic (PV) community due to their rapid development in device power conversion efficiency (PCE) >13%. In the present work, we demonstrated the fine-tuning of the bandgap in the CZTSSe TFSCs by altering the sulfur (S) to the selenium (Se) chalcogenide ratio. To achieve this, the CZTSSe absorber layers are fabricated with different S/(S+Se) ratios from 0.02 to 0.08 of their weight percentage. Further compositional, morphological, and optoelectronic properties are studied using various characterization techniques. It is observed that the change in the S/(S+Se) ratios has minimal impact on the overall Cu/(Zn+Sn) composition ratio. In contrast, the S and Se content within the CZTSSe absorber layer gets altered with a change in the S/(S+Se) ratio. It also influences the overall absorber quality and gets worse at higher S/(S+Se). Furthermore, the device performance evaluated for similar CZTSSe TFSCs showed a linear increase and decrease in the open circuit voltage (Voc) and short circuit current density (Jsc) of the device with an increasing S/(S+Se) ratio. The external quantum efficiency (EQE) measured also exhibited a linear blue shift in absorption edge, increasing the bandgap from 1.056 eV to 1.228 eV, respectively.

Manufacturing and testing of flat-type divertor mockup with advanced materials

  • Nanyu Mou;Xiyang Zhang;Qianqian Lin;Xianke Yang;Le Han;Lei Cao;Damao Yao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2139-2146
    • /
    • 2023
  • During reactor operation, the divertor must withstand unprecedented simultaneous high heat fluxes and high-energy neutron irradiation. The extremely severe service environment of the divertor imposes a huge challenge to the bonding quality of divertor joints, i.e., the joints must withstand thermal, mechanical and neutron loads, as well as cyclic mode of operation. In this paper, potassium-doped tungsten (KW) is selected as the plasma facing material (PFM), oxygen-free copper (OFC) as the interlayer, oxide dispersion strengthened copper (ODS-Cu) alloy as the heat sink material, and reduced activation ferritic/martensitic (RAFM) steel as the structural material. In this study, a vacuum brazing technology is proposed and optimized to bond Cu and ODS-Cu alloy with the silver-free brazing material CuSnTi. The most appropriate brazing parameters are a brazing temperature of 940 ℃ and a holding time of 15 min. High-quality bonding interfaces have been successfully obtained by vacuum brazing technology, and the average shear strength of the as-obtained KW/Cu and ODS-Cu alloy joints is ~268 MPa. And a fabrication route for manufacturing the flat-type divertor target based on brazing technology is set. For evaluating the reliability of the fabrication technologies under the reactor relevant condition, the high heat flux test at 20 MW/m2 for the as-manufactured flat-type KW/Cu/ODS-Cu/RAFM mockup is carried out by using the Electron-beam Material testing Scenario (EMS-60) with water cooling. This paper reports the improved vacuum brazing technology to connect Cu to ODS-Cu alloy and summarizes the production route, high heat flux (HHF) test, the pre and post non-destructive examination, and the surface results of the flat-type KW/Cu/ODS-Cu/RAFM mockup after the HHF test. The test results demonstrate that the mockup manufactured according to the fabrication route still have structural and interfacial integrity under cyclic high heat loads.

Establishment and application of standard-RSF for trace inorganic matter mass analysis using GD-MS (GD-MS 분석 장비를 활용한 극미량 무기물 질량 분석을 위한 표준RSF 구축 및 응용)

  • Jang, MinKyung;Yang, JaeYeol;Lee, JongHyeon;Yoon, JaeSik
    • Analytical Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.240-246
    • /
    • 2018
  • The present study analyzed standard samples of three types of aluminum matrix certified reference materials (CRM) using GD-MS. Calibration curves were constructed for 13 elements (Mg, Si, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Sn, and Pb), with the slope representing the relative sensitivity factor (RSF). The x- and y-axes of the calibration curve represented ion beam ratio (IBR) and the authenticated value of the standard sample, respectively. In order to evaluate precision and linearity of the calibration curve, RSD and the coefficient of determination were calculated. Curve RSD for every element reflected high precision (within 10 %). For most elements, the coefficient of determination was ${\geq}0.99$, indicating excellent linearity. However, vanadium, nickel, and gallium curves exhibited relatively low linearity (0.90~0.95), likely due to their narrow concentration ranges. Standard RSF was calculated using the slope of the curve generated for three types of CRM. Despite vanadium, nickel, and gallium exhibiting low coefficients of determination, their standard RSF resembled that of the three types of CRM. Therefore, the RSF method may be used for element quantitation. Standard iron matrix samples were analyzed to verify the applicability of the aluminum matrix standard RSF, as well as to calculate the RSD-estimated error of the measured value relative to the actual standard value. Six elements (Al, Si, V, Cr, Mn, and Ni) exhibited an RSD of approximately 30 %, while the RSD of Cu was 77 %. In general, Cu isotopes are subject to interference: $^{63}Cu$ to $^{54}Fe^{2+}-^{36}Ar$ and $^{65}Cu$ to $^{56}Fe-Al^{3+}$ interference. Thus, the influence of these impurities may have contributed to the high RSD value observed for Cu. To reliably identify copper, the resolution should be set at ${\geq}8000$. However, high resolutions are inappropriate for analyzing trace elements, as it lowers ion permeability. In conclusion, quantitation of even relatively low amounts of six elements (Al, Si, V, Cr, Mn, and Ni) is possible using this method.

A Study on the Characteristics of $PM_{10}$ and Air-borne Metallic Elements Produced in the Industrial City (산업도시 대기 중$PM_{10}$의 농도 및 금속원소 성분의 특성 연구)

  • 나덕재;이병규
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.1
    • /
    • pp.23-35
    • /
    • 2000
  • PM10, which is below 10 ${\mu}{\textrm}{m}$ in a diameter, has a high deposition in the lung or the bronchus by breathing and is generally composed of a lot of organic matters, viruses, algae, mold, and metallic elements that are very toxic to people. This study identified the characteristics of concentration of PM10 and air-borne jmetallic elements produced in the industrial city, Ulsan, and analyzed the correlatuion between sources and generation patterns of PM10 and metallic elements. We classified the five areas(green, residential, heavy traffic, mechanic, and petrochemcal and non-ferrous metal) which might have different characteristics of sources of PM10 and metallic elements. The average concentrations of PM10 in the five areas were as follows(petrochemical and non-ferrous metal(99.9$\mu\textrm{g}$/㎥)>mechanic(77.5 $\mu\textrm{g}$/㎥)>heavy traffic(47.1 $\mu\textrm{g}$/㎥)>residential(39.3 $\mu\textrm{g}$/㎥)>green(32.8 $\mu\textrm{g}$/㎥)). Those of petrochemical and non-ferrous metal areas were higher than other areas. In this study, the average concentration trend of metallic elements contained in PM10 are shown as follows: Fe>Zn>Pb>Cu>Mn>Cr>As>Cd>Sn>Hg, respectively. The metallic elements identified in PM10 showed the highest concentration in the petrochemical and non-ferrous areas. Metal combinations showed that a high correlation among concentrations of heavy metals were as follows: As, Cd and Fe in the residential area; Zn, Mn, Cu and Pb in the mechanical area; and Zn, Cu, As, Pb in the petrochemical and non-ferrous industrial area.

  • PDF

General Geochemical Characteristics of Dashinchilen Nb-Ta and Sant Cu Occurrences in Southeastern Part of Khangai Area, Mongolia (몽골 항가이 남동부 지역 다신칠렌 탄탈륨-니오븀 및 산트 동 산출지의 지구화학적 특성 개요)

  • Kim, In Joon;Lee, Bum Han;Heo, Chul-Ho
    • Economic and Environmental Geology
    • /
    • v.46 no.5
    • /
    • pp.455-468
    • /
    • 2013
  • We performed reconnaissance survey on Dashinchilen Nb-Ta REE area and Sant Cu area which are located in southeastern part of Khangai rare metals mineralized belt. In Dashinchilen area, Nb and Ta have been found in pegmatitic granite that is largely distributed in the survey area and muscovite in pegmatite which is an intrusion in paleozoic sedimentary rocks which are mostly composed of sandstone. While grades of Nb and Ta are not high, an outcrop that has high Th and U contents (542 ppm of Th and 56.9 ppm of U) has been found. Average and maximum REE contents in the survey area is three times and seven times, respectively, larger than average REE contents in the crust of the Earth. In Sant area, copper oxides such as malachite has been found in quartzite in paleozoic sedimentary rocks. A sedimentary rock formation that has high grade of Mn (12.4-34.6 %) has been found in the survey area. This sedimentary rock formation is the same formation with that of Ugii Nuur Fe-Mn mineralization which is located about 200 km northwest of the survey area. Average and maximum REE contents in the survey area is two and half times and seven times, respectively, larger than average REE contents in the crust of the Earth. According to the factor analysis for the data of the geochemical analysis, Nb and Ta in Dashinchilen area are highly correlated with muscovite and Cu in Sant area is highly correlated with Mo, Sn, and Bi. Furthermore, the factor analysis results show that Fe in Sant area was deposited with rare earth elements.

A Study on the Characteristics of Verdigris Manufactured by Acid Corrosion Method (산부식법으로 제조한 동록안료의 특성에 관한 연구)

  • Kang, Yeong Seok;Mun, Seong Woo;Lee, Sun Myung;Jeong, Hye Young
    • Journal of Conservation Science
    • /
    • v.36 no.3
    • /
    • pp.178-186
    • /
    • 2020
  • Verdigris is a traditional artificial pigment reported on old research papers and according to the methods mentioned in the literature, it is manufactured by the corrosion of copper or copper alloys using vinegar and by further scraping the generated rust. Since the Three Kingdoms Period, various household products with copper alloys, such as bronze and brass, have been used, and pigment analysis of these cultural heritage items has revealed the presence of tin, zinc, lead, and copper in green pigments. Based on these data, five types of verdigris were prepared from copper and copper alloys, and analyzed. the analysis results revealed a bluish green pigmentation, and the chromaticity, particle shape, and oil absorption quantity of each verdigris differed based on the type of copper alloy used in its preparation. The main components of verdigris are Cu, Sn, Zn and Pb, and their proportions depended on the type of copper alloy used during manufacturing. However, the main constituent mineral of the pigments is the same as 'hoganite[Cu(CH3COO)2·H2O]', regardless of the copper alloy used. The result of accelerated weathering test for stability evaluation revealed that verdigris was discolored rapidly, thereby indicating that its stability was low, in particular, the pigments comprising lead presented relatively lower stability.

Fabrication of P-type Transparent Oxide Semiconductor SrCu2O2 Thin Films by RF Magnetron Sputtering (RF 마그네트론 스퍼터링을 이용한 p 타입 투명전도 산화물 SrCu2O2 박막의 제조)

  • Seok, Hye-Won;Kim, Sei-Ki;Lee, Hyun-Seok;Lim, Tae-Young;Hwang, Jong-Hee;Choi, Duck-Kyun
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.676-680
    • /
    • 2010
  • Most TCOs such as ITO, AZO(Al-doped ZnO), FTO(F-doped $SnO_2$) etc., which have been widely used in LCD, touch panel, solar cell, and organic LEDs etc. as transparent electrode material reveal n-type conductivity. But in order to realize transparent circuit, transparent p-n junction, and introduction of transparent p-type materials are prerequisite. Additional prerequisite condition is optical transparency in visible spectral region. Oxide based materials usually have a wide optical bandgap more than ~3.0 eV. In this study, single-phase transparent semiconductor of $SrCu_2O_2$, which shows p-type conductivity, have been synthesized by 2-step solid state reaction at $950^{\circ}C$ under $N_2$ atmosphere, and single-phase $SrCu_2O_2$ thin films of p-type TCOs have been deposited by RF magnetron sputtering on alkali-free glass substrate from single-phase target at $500^{\circ}C$, 1% $H_2$/(Ar + $H_2$) atmosphere. 3% $H_2$/(Ar + $H_2$) resulted in formation of second phases. Hall measurements confirmed the p-type nature of the fabricated $SrCu_2O_2$ thin films. The electrical conductivity, mobility of carrier and carrier density $5.27{\times}10^{-2}S/cm$, $2.2cm^2$/Vs, $1.53{\times}10^{17}/cm^3$ a room temperature, respectively. Transmittance and optical band-gap of the $SrCu_2O_2$ thin films revealed 62% at 550 nm and 3.28 eV. The electrical and optical properties of the obtained $SrCu_2O_2$ thin films deposited by RF magnetron sputtering were compared with those deposited by PLD and e-beam.

Synthesis of Ni-based Metallic Glass Composite Fabricated by Spark Plasma Sintering (방전플라즈마소결을 이용한 Ni계 비정질 복합재의 제조)

  • Kim, Song Yi;Guem, Bo Kyeong;Lee, Min Ha;Kim, Bum Sung
    • Journal of Powder Materials
    • /
    • v.20 no.1
    • /
    • pp.33-36
    • /
    • 2013
  • A bulk metallic glass-forming alloy, $Ni_{59}Zr_{20}Ti_{16}Si_2Sn_3$ metallic glass powders was used for good commercial availability and good formability in supercooled liquid region. In this study, the Ni-based metallic glass was synthesized using by high pressure gas atomized metallic glass powders. In order to create a bulk metallic glass sample, the $Ni_{59}Zr_{20}Ti_{16}Si_2Sn_3$ metallic glass powders with ball-milled Ni-based amorphous powder with 40%vol brass powder and Cu powder for 20 hours. The composite specimens were prepared by Spark Plasma Sintering for the precursor. The SPS was performed at supercooled liquid region of Ni-based metallic glass. The amorphous structure of the final sample was characterized by SEM, X-ray diffraction and DSC analysis.

Monitoring Research for Heavy Metals as Endocrine Disruptors in Herbal Medicines and Ssangwha-Tang (한약재와 탕액(쌍화탕)중 내분비계 장애물질로서의 개별 중금속의 함량 연구( I ))

  • Kim, Jin-Sook;Hwang, Sung-Won;Kim, Jong-Moon;Ma, Jin-Yeul
    • Korean Journal of Oriental Medicine
    • /
    • v.6 no.1
    • /
    • pp.117-122
    • /
    • 2000
  • The purpose of this study is to compare the contents of heavy metals of boiled ssangwhatang with those of herbal ingredients which are composed of ssangwhatang. Ssangwhatang is used for antifatigue, tonic and so on. With industrial development, our environment has been very polluted. Herbal medicines also are seriously contaminated by heavy metals and pesticides. The herbal medicines of ssangwhatang were bought at 10 defferent markets. The contents of 14 heavy metals(Ag, As, Ba, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Sn, Zn) were analysed using ICP. It was found out that 7 heavy metals(Pb, As, Ba, Cd, Hg, Sb, Sn) were not detected at all in boiled ssangwhatangs. But they were detectable in all ssangwhatangingredients before boiling. For example, the content of Pb in one pack of ssangwhatang before boiling was $0.039^{\circ}{\pm}0.005mg$ and Pb in boiled one was not detected. Herbal medicine itself is seriously contaminated by heavy metals. These results suggest that boiled ssangwhatang which we take is safe from the contamination of heavy metals.

  • PDF

$CaSnO_3$와 소결조제가 첨가된 $BaTiO_3$ 유전체 세라믹의 소결거동 및 유전특성

  • Kim, Tae-Hong;Lee, Jae-Shin;Choy, Tae-Goo
    • ETRI Journal
    • /
    • v.13 no.2
    • /
    • pp.42-53
    • /
    • 1991
  • 고유전율 적충세라믹 커패시터 소재인 $BaTiO_3$ 자기물은 일반적으로 큐리오도인 약 $120^{\circ}C$부근에서 유전율이 최고 약 10,000정도로 증가한 다음 급격히 감소하므로 적절한 이동체를 첨가하여 큐리온도를 상온으로 이동시켜 상온에서 최대 유전율을 이용하여야 한다. 그리고$BaTiO_3$ 자기물은 $1300^{\circ}C$이상의 고온소결시 고가인 Pd전극이 요구된다. 그러나 자기물의 소결온도를 저온화화면 저가의 Ag합금으로 전극재료를 대체할 수 있다. 본 연구에서는 이동제로서 $CaSnO_3$ 를 이용하여 큐리온도를 상온으로 이동시켰다. 또한 소결온도를 저온화하기 위하여 $BaTiO_3$ 세라믹에 여러가지 산화물을 첨가하여 소결현상을 살펴보았다. 실험결과 첨가제를 넣지 않은 경우 소결온도는 $1350^{\circ}C$의 고온이 필요한 반면, $CuO,B_2O_3$$1050^{\circ}C$의 낮은 온도에서도 치밀화와 입도성장이 잘 일어났다. 특히 $B_2$$O_3$ 를 첨가한 경우는 $1250^{\circ}C$이상에서 소결할 때 절연저항이 낮아 유전손실이 큰 문제점을 보였지만, 최대 유전율이 11,000 정도로 높고, 양호한 유전율의 온도변화 특성을 나타내어 우수한 고유전율 소재의 첨가제로 응용될 가능성을 보였다

  • PDF