• Title/Summary/Keyword: Cu-10Sn

Search Result 549, Processing Time 0.03 seconds

Restoration and Scientific Analysis of Casting Bronze Type in Joseon Dynasty (조선왕실 주조 청동활자의 복원과 과학적 분석)

  • Yun, Yong-Hyun;Cho, Nam-Chul;Lee, Seung-Cheol
    • Journal of Conservation Science
    • /
    • v.25 no.2
    • /
    • pp.207-217
    • /
    • 2009
  • After replicating 10 bronze types such as Gyemija, Gyeongjaja, Eulhaeja, etc. before the Imjin war, we studied the change of microstructure from each casting process, method, and alloy ratio by Gyechukja replicated from "Donggukyeojiseungnam". We selected the average of compositions of Eulhaeja in the National Museum of Korea as the standard(Cu 86.7%, Sn: 9.7%, Pb: 2.3%) of bronze types, so we decided on the alloy's composition of Cu 87%, Sn 15%, Pb 8% added to 5% Sn and Pb contents because of evaporating the Sn and the Pb. Before replicating major metal types, we made master-alloy first, melting it again, and then replicated metal types. The composition of the 1'st replicated Gyechukja showed the range of Cu 85.81~87.63%, Sn 9.27~10.51%, Pb 3.05~3.19%. The 2'nd replicated Gyechukja made using the branch metal left after casting the 1st replica. The 2nd replicated Gyechukja showed the composition range of Cu 87.21~88.09%, Sn 9.06~9.36%, Pb 2.80~3.05%. This result decreases a little contents of Sn and Pb as compared with metal types of the 1st replica. However, it's almost the same as the Eulhaeja's average composition ratio in the National Museum of Korea. As a result of observing the microstructure of restored Gyechukja, it showed the dendrite structure of the typical casting structure and the segregation of Pb. There is no big difference of microstructure between the 1st and the 2nd restored metal types, even though the 2nd restored types partially decreases the eutectoid region in comparison with the 1st types. The systematic and scientific restoration experiment of metal types using Joseon period will be showed the casting method and alloy ratio, and this will be of great help to the study of restoration metal types in the future.

  • PDF

Warpage and Stress Simulation of Bonding Process-Induced Deformation for 3D Package Using TSV Technology (TSV 를 이용한 3 차원 적층 패키지의 본딩 공정에 의한 휨 현상 및 응력 해석)

  • Lee, Haeng-Soo;Kim, Kyoung-Ho;Choa, Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.5
    • /
    • pp.563-571
    • /
    • 2012
  • In 3D integration package using TSV technology, bonding is the core technology for stacking and interconnecting the chips or wafers. During bonding process, however, warpage and high stress are introduced, and will lead to the misalignment problem between two chips being bonded and failure of the chips. In this paper, a finite element approach is used to predict the warpages and stresses during the bonding process. In particular, in-plane deformation which directly affects the bonding misalignment is closely analyzed. Three types of bonding technology, which are Sn-Ag solder bonding, Cu-Cu direct bonding and SiO2 direct bonding, are compared. Numerical analysis indicates that warpage and stress are accumulated and become larger for each bonding step. In-plane deformation is much larger than out-of-plane deformation during bonding process. Cu-Cu bonding shows the largest warpage, while SiO2 direct bonding shows the smallest warpage. For stress, Sn-Ag solder bonding shows the largest stress, while Cu-Cu bonding shows the smallest. The stress is mainly concentrated at the interface between the via hole and silicon chip or via hole and bonding area. Misalignment induced during Cu-Cu and Sn-Ag solder bonding is equal to or larger than the size of via diameter, therefore should be reduced by lowering bonding temperature and proper selection of package materials.

Synthesis of Solution-Processed Cu2ZnSnSe4 Thin Films on Transparent Conducting Oxide Glass Substrates

  • Ismail, Agus;Cho, Jin Woo;Park, Se Jin;Hwang, Yun Jeong;Min, Byoung Koun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.1985-1988
    • /
    • 2014
  • $Cu_2ZnSnSe_4$ (CZTSe) thin films were synthesized on transparent conducting oxide glass substrates via a simple, non-toxic, and low-cost process using a precursor solution paste. A three-step heating process (oxidation, sulfurization, and selenization) was employed to synthesize a CZTSe thin film as an absorber layer for use in thin-film solar cells. In particular, we focused on the effects of sulfurization conditions on CZTSe film formation. We found that sulfurization at $400^{\circ}C$ involves the formation of secondary phases such as $CuSe_2$ and $Cu_2SnSe_3$, but they gradually disappeared when the temperature was increased. The formed CZTSe thin films showed homogenous and good crystallinity with grain sizes of approximately 600 nm. A solar cell device was tentatively fabricated and showed a power conversion efficiency of 2.2% on an active area of 0.44 $cm^2$ with an open circuit voltage of 365 mV, a short current density of 20.6 $mA/cm^2$, and a fill factor of 28.7%.

Reflow Soldering Characteristics of Sn-3.5Ag Balls for BGA (BGA용 Sn-3.5Ag 롤의 리플로 솔더링 특성)

  • 한현주;정재필;하범용;신영의;박재용;강춘식
    • Journal of Welding and Joining
    • /
    • v.19 no.2
    • /
    • pp.176-181
    • /
    • 2001
  • Reflow soldering characteristics of Sn-3.5Ag and Sn-37Pb balls for BGA(Ball grid Array) were investigated. Diameter of 0.76mm ball was set on a Cu/Ni/Au-coated pad and reflowed in air with changing peak soldering temperature and conveyor speed. Peak temperatures were changed from 240 to 28$0^{\circ}C$ for Sn-3.5Ag, and from 220 to 26$0^{\circ}C$ for Sn-37Pb balls. As results, heights of solder balls increased and widths decreased with peak soldering temperature. Through aging treatment at 10$0^{\circ}C$ for 1.000 hrs, average hardness of Sn-3.5Ag balls bonded at 25$0^{\circ}C$ cecreased from 14.90Hv to 12.83Hv And with same aging conditions, average shear strength of Sn-3.5Ag balls bonded at 26$0^{\circ}C$ decreased from 1727gf to 1650gf.

  • PDF

Properties of High Power Flip Chip LED Package with Bonding Materials (접합 소재에 따른 고출력 플립칩 LED 패키지 특성 연구)

  • Lee, Tae-Young;Kim, Mi-Song;Ko, Eun-Soo;Choi, Jong-Hyun;Jang, Myoung-Gi;Kim, Mok-Soon;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Flip chip bonded LED packages possess lower thermal resistance than wire bonded LED packages because of short thermal path. In this study, thermal and bonding properties of flip chip bonded high brightness LED were evaluated for Au-Sn thermo-compression bonded LEDs and Sn-Ag-Cu reflow bonded LEDs. For the Au-Sn thermo-compression bonding, bonding pressure and bonding temperature were 50 N and 300oC, respectively. For the SAC solder reflow bonding, peak temperature was $255^{\circ}C$ for 30 sec. The shear strength of the Au-Sn thermo-compression joint was $3508.5gf/mm^2$ and that of the SAC reflow joint was 5798.5 gf/mm. After the shear test, the fracture occurred at the isolation layer in the LED chip for both Au-Sn and SAC joints. Thermal resistance of Au-Sn sample was lower than that of SAC bonded sample due to the void formation in the SAC solder.

Superconducting Properties of in situ Formed Multifilamentary Cu - Nb3Sn Composites and the Effects of Ti Addition on the Superconducting Properties (I) (In situ 법에 의한 Cu-Nb3Sn 복합재료선재의 초전도특성과 이에 미치는 Ti의 영향(I))

  • Park, H.S.;Suh, S.J.;Lee, U.D.;Ahn, J.M.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.1
    • /
    • pp.17-25
    • /
    • 1993
  • The Cu - $Nb_3Sn$ composites wire as a superconducting material was prepared by in situ method as follow: Cu - 15wt.% Nb alloys which were melted in a high -frequency induction furnace and casted in bar were cold-worked up to the final diameter of 0.24 mm, electroplated with Sn, pre-treated in two steps and then diffused at $550{\sim}650^{\circ}C$ for 24 ~ 96 hrs. The overall $J_c$ and $T_c$ of the specimens were measured by the four point-probe method at 10 K in the magnetic field of 0 Tesla. The overall $J_c$ of the composites wire which diffused at $550^{\circ}C$ after pre-treating in two steps were generally higher than those of the wire at either $600^{\circ}C$ or $650^{\circ}C$. For the specimens diffused at $550^{\circ}C$, the overall $J_c$ were increased until 72 hrs. of diffusion time and then decreased. However, in case of diffusion at $600^{\circ}C$ and $650^{\circ}C$, the overall $J_c$ were gradually decreased from the beginning. The maximum overall $J_c$ obtained in this experiment was $1.3{\times}10^4\;A/cm^2$, which was measured for the specimen diffused at $550^{\circ}C$ for 72 hrs. When the specimens were diffused at $550^{\circ}C$ for 72 hrs, after pre-treating, the measured critical temperature, $T_c$ was 16.19 K. Similar $T_c$ value were obtained in other specimens regardless of diffusion time and temperature.

  • PDF

Solderability of thin ENEPIG plating Layer for Fine Pitch Package application (미세피치 패키지 적용을 위한 thin ENEPIG 도금층의 솔더링 특성)

  • Back, Jong-Hoon;Lee, Byung-Suk;Yoo, Sehoon;Han, Deok-Gon;Jung, Seung-Boo;Yoon, Jeong-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.83-90
    • /
    • 2017
  • In this paper, we evaluated the solderability of thin electroless nickel-electroless palladium-immersion gold (ENEPIG) plating layer for fine-pitch package applications. Firstly, the wetting behavior, interfacial reactions, and mechanical reliability of a Sn-3.0Ag-0.5Cu (SAC305) solder alloy on a thin ENEPIG coated substrate were evaluated. In the wetting test, maximum wetting force increased with increasing immersion time, and the wetting force remained a constant value after 5 s immersion time. In the initial soldering reaction, $(Cu,Ni)_6Sn_5$ intermetallic compound (IMC) and P-rich Ni layer formed at the SAC305/ENEPIG interface. After a prolonged reaction, the P-rich Ni layer was destroyed, and $(Cu,Ni)_3Sn$ IMC formed underneath the destroyed P-rich Ni layer. In the high-speed shear test, the percentage of brittle fracture increased with increasing shear speed.

Lead-free Solder for Automotive Electronics and Reliability Evaluation of Solder Joint (자동차 전장용 무연솔더 및 솔더 접합부의 신뢰성 평가)

  • Bang, Jung-Hwan;Yu, Dong-Yurl;Ko, Young-Ho;Yoon, Jeong-Won;Lee, Chang-Woo
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.26-34
    • /
    • 2016
  • Automotive today has been transforming to an electronic product by adopting a lot of convenience and safety features, suggesting that joining materials and their mechanical reliabilities are getting more important. In this study, a Sn-Cu-Cr-Ca solder composition having a high melting temperature ($>230^{\circ}C$) was fabricated and its joint properties and reliability was investigated with an aim to evaluate the suitability as a joining material for electronics of engine room. Furthermore, mechanical properties change under complex environment were compared with several existing solder compositions. As a result of contact angle measurement, favorable spreadability of 84% was shown and the average shear strength manufactured with corresponding composition solder paste was $1.9kg/mm^2$. Also, thermo-mechanical reliability by thermal shock and vibration test was compared with that of the representative high temperature solder materials such as Sn-3.5Ag, Sn-0.7Cu, and Sn-5.0Sb. In order to fabricate the test module, solder balls were made in joints with ENIG-finished BGA and then the BGA chip was reflowed on the OPS-finished PCB pattern. During the environmental tests, resistance change was continuously monitored and the joint strength was examined after tests. Sn-3.5Ag alloy exhibited the biggest degradation rate in resistance and shear stress and Sn-0.7Cu resulted in a relatively stable reliability against thermo-mechanical stress coming from thermal shock and vibration.

Evaluation of Cu Effect on Corrosion Characteristics of Zr Alloys (지르코늄합금의 부식특성에 미치는 Cu 영향 평가)

  • Kim Hyun Gil;Choi Byung Kyun;Jeong Yong Hwan
    • Korean Journal of Materials Research
    • /
    • v.14 no.7
    • /
    • pp.462-469
    • /
    • 2004
  • The effect of Cu addition on the corrosion characteristics of Zr alloys that developed for nuclear fuel cladding in KAERI (Korea Atomic Energy Research Institute) was evaluated. The alloys having different element of Nb, Sn, Fe, Cr and Cu were manufactured and the corrosion tests of the alloys were performed in static autoclave at $360^{\circ}C$, distilled water condition. The alloys were also examined for their microstructures using the optical microscope and the TEM equipped with EDS and the oxide property was characterized by using X-ray diffraction. From the result of corrosion test more than 450 days, the corrosion rate of the Zr-based alloys was changed with alloying element such as Nb, Sn, Fe, Cr and especially affected by Cu addition. The corrosion resistance was increased with increasing the Cu content and the tetragonal $ZrO_2$ layer was more stabilized on the Cu-containing alloys.

Interfacial and Mechanical Properties of Sn-57Bi-1Ag Solder Joint with Various Conditions of a Laser Bonding Process (다양한 레이저 접합 공정 조건에 따른 Sn-57Bi-1Ag 솔더 접합부의 계면 및 기계적 특성)

  • Ahn, Byeongjin;Cheon, Gyeong-Yeong;Kim, Jahyeon;Kim, Jungsoo;Kim, Min-Su;Yoo, Sehoon;Park, Young-Bae;Ko, Yong-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.65-70
    • /
    • 2021
  • In this study, interfacial properties and mechanical properties of joints were reported after Cu pads finished with organic solderability preservative (OSP) on flame retardant-4 (FR-4) printed circuit board (PCB) and electronic components were joined with a Sn-57Bi-1Ag solder paste by using a laser bonding process. The laser bonding process was performed under various bonding conditions with changing a laser power and a bonding time and effects of bonding conditions on interfacial and mechanical properties of joints were analyzed. In order to apply for industry, properties of bonding joints using a reflow bonding process which are widely used were compared. When the laser bonding process were performed, we observed that Cu6Sn5 intermetallic compounds (IMCs) were fully formed at the interface although the bonding times were very short about 2 and 3 s. Furthermore, void formations of the joints by using the laser bonding process were suppressed at the joints with comparing to the reflow bonding process and shear strengths of bonding joints were higher than that by using the reflow bonding process. Therefore, in spite of a very short bonding time, it is expected that joints will be stably formed and have a high mechanical strength by using the laser bonding process.