• Title/Summary/Keyword: Cu-10Sn

Search Result 549, Processing Time 0.025 seconds

Evaluation of Shear Strength for Pb-free Solder/Ni and Cu Plate Joints due to Reflow Time (리플로우 시간에 따른 Pb-free 솔더/Ni 및 Cu 기판 접합부의 전단강도 평가)

  • Ha, Byeori;Yu, Hyosun;Yang, Sungmo;Ro, Younsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.134-141
    • /
    • 2013
  • Reflow soldering process is essential in electronic package. Reflow process for a long time results from the decrease of reliability because IMC is formed excessively. Solder alloys of Sn-37Pb and Sn-Ag with different kinds of Cu contents (0, 0.5 and 1 wt.%) as compared with Ni and Cu plate joints are investigated according to varying reflow time. The interfaces of solder joints are observed to analyze IMC (intermetallic compound) growth rate by scanning electron microscope (SEM). Shear test is also performed by using SP (Share-Punch) tester. The test results are compared with the solder joints of two different plates (Ni and Cu plate). $Cu_6Sn_5$ IMCs are formed on Cu plate interfaces after reflows in all samples. Ni3Sn4 and $(Cu,Ni)_6Sn_5$ IMCs are also formed on Ni plate interfaces. The IMC layer forms are affected by reflow time and contents of solder alloy. These results show that mechanical strength of solder joints strongly depends on thickness and shape of IMC.

Mechanical and Physical Property Changes of Cu-Ni-Si-Sn-Fe-P Copper Alloy System According to the Heat Treatment Conditions (열처리조건에 따른 Cu-Ni-Si-Sn-Fe-P 석출경화형 동합금계의 물성변화 특성)

  • Kim, Seung-Ho;Yum, Young-Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.5
    • /
    • pp.225-232
    • /
    • 2013
  • The influence of aging treatment, addition elements and rolling reduction ratio on the microstructure, mechanical, electrical and bendability properties of Cu-Ni-Si-P-x (x = Fe, Sn, Zn) alloys for connector material application was investigated. SEM/EDS analysis exhibited that Ni2-Si precipitates with a size of 20~100 nm were distributed in grains. Fe, Sn, Zn elemnets in Cu-Ni-Si-P alloy imporved the mechanical strength but it was not favor in increasing of electrical conductivity. As higher final rolling reduction ratio, the strength and electrical conductivity is increased after aging treatment, but it indicated excellent bendability. Especially, Cu-2Ni-0.4Si-0.5Sn-0.1Fe-0.03P alloy show the tensile strength value of 700MPa and the electrical conductivity was observed to reach a maximum of 40%IACS. It is optimal for lead frame and connector.

Effects of Alloying Elements on the Tensile Strength and Electrical Conductivity of Cu-Fe-P Based Alloys (Cu-Fe-P계 합금의 강도 및 전기전도도에 미치는 첨가 원소의 영향)

  • Kim, Dae-Hyun;Lee, Kwang-Hak
    • Korean Journal of Materials Research
    • /
    • v.20 no.2
    • /
    • pp.65-71
    • /
    • 2010
  • In this study, the effect of Sn and Mg on microstructure and mechanical properties of Cu-Fe-P alloy were investigated by using scanning electron microscope, transmission electron microscope, tensile strength, electrical conductivity, thermal softening, size and distribution of the precipitation phases in order to satisfy characteristic for lead frame material. It was observed that Cu-0.14wt%Fe-0.03wt%P-0.05wt%Si-0.1wt%Zn with Sn and Mg indicates increasing tensile strength compare with PMC90 since Sn restrained the growth of the Fe-P precipitation phase on the matrix. However, the electrical conductivity was decreased by adding addition of Sn and Mg because Sn was dispersed on the matrix and restrained the growth of the Fe-P precipitation. The size of 100 nm $Mg_3P_2$ precipitation phase was observed having lattice parameter $a:12.01{\AA}$ such that [111] zone axis. According to the results of the study, the tensile strength and the electrical conductivity satisfied the requirements of lead frame; so, there is the possibility of application as a substitution material for lead frame of Cu alloy.

A Study of Optimization of Electrodeposited CuSnZn Alloys Electrolyte and Process

  • Hur, Jin-Young;Lee, Ho-Nyun;Lee, Hong-Kee
    • Journal of Surface Science and Engineering
    • /
    • v.43 no.2
    • /
    • pp.64-72
    • /
    • 2010
  • CuSnZn electroplating was investigated as alternative to Ni plating. Evaluation of electrolyte and plating process was performed to control physical characteristics of the film, and to collect practical data for application. Hull-cell test was conducted for basic comparison of two commercialized products and developed product. Based on hull-cell test results, long term test of three electrolytes was performed. Various analysis on long term tested electrolyte and samples have been done. Reliable and practical data was collected using FE-SEM (FEI, Sirion), EDX (ThermoNoran SIX-200E), ICP Spectrometer (GBC Scientifi c, Integra XL), FIB (FEI, Nova600) for anlysis. Physical analysis and reliability test of the long term tested film were also carried out. Through this investigation plating time, plating speed, electrolyte composition, electrolyte metal consumption, hardness and corrosion resistance has been compared. This set of data is used to predict and control the chemical composition of the film and modify the physical characteristics of the CuSnZn alloy.

Effect of Alloying Elements Si, S, Cu, Sn, and Ni on Oxidation of Low Carbon Steels between 1050 and 1180℃ in Air (저탄소강의 대기중 1050~1180℃의 산화에 미치는 합금원소 Si, S, Cu, Sn, Ni의 영향)

  • Bak, Sang Hwan;Lee, Dong Bok;Baek, Seon-Pil
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.8
    • /
    • pp.749-756
    • /
    • 2010
  • Low carbon steels were oxidized isothermally at 1050 and $1180^{\circ}C$ for 4 hr in air in order to determine the effect of alloying elements Si, S, Cu, Sn, and Ni on oxidation. For oxidation resistance of low carbon steels, the beneficial elements were Si, Cu, and Ni, whereas the harmful elements were S and Sn. The most active alloying element, Si, was scattered inside the oxide scale, at the scale-alloy interface, and as an internal oxide precipitate. The relatively noble elements such as Cu and Ni tended to weakly segregate at the scale-alloy interface. Sulfur and Sn were weakly, uniformly distributed inside the oxide scale. Excessively thick, non-adherent scales containing interconnected pores formed at $1180^{\circ}C$.

Behavior of Vibration Fracture for Sn-Ag-Cu-X Solders by Soldering (Sn-Ag-Cu-X 무연솔더로 솔더링 된 접합부의 진동파괴 거동)

  • Jin, Sang-Hun;Kang, Nam-Hyun;Cho, Kyung-Mox;Lee, Chang-Woo;Hong, Won-Sik
    • Journal of Welding and Joining
    • /
    • v.30 no.2
    • /
    • pp.65-69
    • /
    • 2012
  • Environmental and health concerns over the lead have led to investigation of the alternative Pb-free solders to replace commonly used Pb-Sn solders in microelectronic packaging application. The leading candidates for lead-free solder alloys are presently the near eutectic Sn-Ag-Cu alloys. Therefore, extensive studies on reliability related with the composition have been reported. However, the insufficient drop property of the near eutectic Sn-Ag-Cu alloys has demanded solder compositions of low Ag content. In addition, the solder interconnections in automobile applications like a smart box require significantly improved vibration resistance. Therefore, this study investigated the effect of alloying elements (Ag, Bi, In) on the vibration fatigue strength. The vibration fatigue was conducted in 10~1000Hz frequency and 20Grms. The interface of the as-soldered cross section close to the Cu pad indicated the intermetallic compound ($Cu_6Sn_5$) regardless of solder composition. The type and thickness of IMC was not significantly changed after the vibration test. It indicates that no thermal activities occurred significantly during vibration. Furthermore, as a function of alloying composition, the vibration crack path was investigated with a focus on the IMCs. Vibration crack was initiated from the fillet surface of the heel for QFP parts and from the plating layer of chip parts. Regardless of the solder composition, the crack during a vibration test was propagated as same as that during a thermal fatigue test.

Characteristics of SAC305 and Nano-Particle Dispersed Solders (SAC305 및 나노 입자 분산 솔더의 특성)

  • Kim, Jang Baeg;Seo, Seong Min;Kang, Hye Jun;Cho, Do Hoon;Rajendran, Sri Harini;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.31-37
    • /
    • 2021
  • Sn-3wt%Ag-0.5wt%Cu (SAC305) solder is most popular solder in electronics industry. However, SAC305 has also drawbacks such as growth of β-Sn phase, intermetallic compounds (IMCs) of Ag3Sn, Cu6Sn5 and Cu3Sn which can result in deterioration of solder joints in terms of metallurgically, mechanically and electrically. Thus, improvement of SAC305 solders have been investigated continuously by addition of alloying elements, nano-particles and etc. In this paper, recent improvements of SAC solders including nano-composite alloys and related solderabilty and metallurgical and mechanical properties are investigated.

Effect of Post Solidification Cooling Condition on the Mechanical Behavior of the 0.36Mn Containing Ductile Iron (0.36Mn이 함유된 구상흑연주철의 냉각조건에 따른 기계적 거동 고찰)

  • Kim, Suck-Dong;Kim, Sung-Gyoo
    • Journal of Korea Foundry Society
    • /
    • v.41 no.4
    • /
    • pp.349-356
    • /
    • 2021
  • Effects of cooling condition after solidification on the microstructure and the mechanical properties of 0.36Mn containing ductile cast iron have been studied based on the minimized addition of Cu and Sn for vehicle component applications with better quality and cost competitiveness. Cu and Sn were selected for additional elements judging from the well-known fact of strong tendency of pearlite promotion followed by the tensile property improvement. After pouring of the Mg treated cast iron melt with various chemical compositions into the block specimens, two ways of post solidification cooling conditions were applied for comparison; both cooling in the mold and cooling in the air after dismantle at 800℃. The pearlite fraction of the mold-cooled specimens was analyzed as 27-44%, with the tensile strength and elongation of 513-568N/mm2 and 10.4-14.3%, respectively. Whilest, the air cooled specimens showed the pearlite fraction of 77~85%, with the tensile strength and elongation of 728~758N/mm2 and 3.2~6.0%, respectively. It is worthwhile to note that the remarkable improvement of both tensile strength and elongation of the ductile iron was achieved by the present air cooling condition with the minimized combined addition of Cu and Sn to the 0.36Mn containing ductile iron.

The Wetting and Interfacial Reaction of Vacuum Brazed Joint between Diamond Grit(graphite) and Cu-13Sn-12Ti Filler Alloy (다이아몬드 grit(흑연) / Cu-13Sn-12Ti 삽입금속 진공 브레이징 접합체의 젖음성 및 계면반응)

  • Ham, Jong-Oh;Lee, Chi-Hwan
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.49-58
    • /
    • 2010
  • Various alloy system, such as Cu-Sn-Ti, Cu-Ag-Ti, and Ni-B-Cr-based alloy are used for the brazing of diamond grits. However, the problem of the adhesion strength between the diamond grits and the brazed alloy is presented. The adhesion strength between the diamond grits and the melting filler alloy is predicted by the contact angle, thereby, instead of diamond grit, the study on the wettability between the graphite and the brazing alloy has been indirectly executed. In this study, Cu-13Sn-12Ti filler alloy was manufactured, and the contact angles, the shear strengths and the interfacial area between the graphites (diamond grits) and braze matrix were investigated. The contact angle was decreased on increasing holding time and temperature. The results of shear strength of the graphite joints brazed filler alloys were observed that the joints applied Cu-13Sn-12Ti alloy at brazing temperature $940^{\circ}C$ was very sound condition indicating the shear tensile value of 23.8 MPa because of existing the widest carbide(TiC) reaction layers. The micrograph of wettability of the diamond grit brazed filler alloys were observed that the brazement applied Cu-13Sn-12Ti alloy at brazing temperature $990^{\circ}C$ was very sound condition because of existing a few TiC grains in the vicinity of the TiC layers.

Mechanical and wear properties of Cu-Al-Ni-Fe-Sn-based alloy

  • Okayasu, Mitsuhiro;Izuka, Daiki;Ninomiya, Yushi;Manabe, Yuki;Shiraishi, Tetsuro
    • Advances in materials Research
    • /
    • v.2 no.4
    • /
    • pp.221-235
    • /
    • 2013
  • To obtain bronze with good mechanical properties and high wear resistance, a new bronze (CADZ) is proposed on the basis of various fundamental information. The CADZ consists of the elements Al10.5, Fe4.2, Sn3.7 and Ni3.1, and its design is based on Cu-Al10.5 alloy. The Cu-10.5%Al is very hard and brittle. To obtain the high material ductility of the Cu-10.5%Al alloy, an attempt was made to add a few percent of Sn. Moreover, to make high strength of the Cu alloy, microstructure with small grains was created by the proper amount of Fe and Ni (Fe/Ni = 0.89). The mechanical properties of the CADZ sample have been examined experimentally, and those were compared with commercial bronzes. The tensile strength and wear resistance of CADZ are higher than those for commercial bronzes. Although the ductility of CADZ is the lower level, the strain to failure of CADZ is about 2.0~5.0% higher than that for the Cu-Al10.5 alloy. Details of the microstructural effects on the mechanical properties in the CADZ sample were further discussed using various experimental results.