• Title/Summary/Keyword: Cu uptake

Search Result 198, Processing Time 0.035 seconds

Biosorption of Pb and Cu by Kjellmaniella crassifolia (개다시마를 이용한 Pb 및 Cu 흡착)

  • 안갑환;서근학;오창섭
    • Journal of Environmental Science International
    • /
    • v.7 no.5
    • /
    • pp.653-658
    • /
    • 1998
  • Marine algaes are capable of binding a large quantity of heavy metals. We have investigated the uptake capacity of Pb and Cu by using 22 species of marine algae. collected from Korean coast. Among a variety of different marine algae types for biosorbent potential. Kjellmaniella crassifolia showed the highest uptake capacity of Pb. Metal uptake of Pb and Cu by Kjellmaniella crassifolia increase as the initial concentration rises, as long as binding sites are remained. The metal uptake parameters for Pb and Cu had been determined according to Langmuir and Freundlich model. By increasing pH, Pb uptake was increased and Cu uptake was constant. The maximum uptake capacity of Pb and Cu by Kjellmaniella crassifolia was 437 mg/g and 129 mg/g, respectively.

  • PDF

Bioaccumulation of copper and zinc by the giant kelp Macrocystis pyrifera

  • Evans, La Kenya;Edwards, Matthew S.
    • ALGAE
    • /
    • v.26 no.3
    • /
    • pp.265-275
    • /
    • 2011
  • This study examined the bioaccumulation of the heavy metals copper (Cu) and zinc (Zn) by the giant kelp, Macrocystis pyrifera, by exposing meristematic kelp tissue to elevated metal concentrations in seawater within laboratory aquaria. Specifically, we carried out two different experiments. The first examined metal uptake under a single, ecologically-relevant elevation of each metal (30 ppb Cu and 100 ppb Zn), and the second examined the relationships between varying levels of the metals (i.e., 15, 39, 60, 120, 240, and 480 ppb Cu, and 50, 100, 200, 300, 500, and 600 ppb Zn). Both experiments were designed to contrast the uptake of the metals in isolation (i.e., when only one metal concentration was elevated) and in combination (i.e., when both metals' concentrations were elevated). Following three days of exposure to the elevated metal concentrations, we collected and analyzed the M. pyrifera tissues using inductively coupled plasma atomic emissions spectroscopy. Our results indicated that M. pyrifera bioaccumulated Cu in all treatments where Cu concentrations in the seawater were elevated, regardless of whether Zn concentrations were also elevated. Similarly, M. pyrifera bioaccumulated Zn in treatments where seawater Zn concentrations were elevated, but this occurred only when we increased Zn alone, and not when we simultaneously increased Cu concentrations. This suggests that elevated Cu concentrations inhibit Zn uptake, but not vice versa. Following this, our second experiment examined the relationships among varying seawater Cu and Zn concentrations and their bioaccumulation by M. pyrifera. Here, our results indicated that, as their concentrations in the seawater rise, Cu and Zn uptake by M. pyrifera tissue also rises. As with the first experiment, the presence of elevated Zn in the water did not appear to affect Cu uptake at any concentration examined. However, although it was not statistically significant, we observed that the presence of elevated Cu in seawater appeared to trend toward inhibiting Zn uptake, especially at higher levels of the metals. This study suggests that M. pyrifera may be useful as a bio-indicator species for monitoring heavy metal pollution in coastal environments.

Effect of Organic Matter Application on Heavy Metal Uptake of Infant Rice Seedling (어린모의 중금속(重金屬) 흡수(吸收)에 미치는 유기물(有機物) 시용(施用) 효과(效果))

  • Kim, Jeong-Gyu;Lee, Chang-Ho;Lee, Won-Seok;Lim, Soo-Kil
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.2
    • /
    • pp.150-155
    • /
    • 1998
  • To investigate effects of organic matter application on heavy metal uptake of infant rice seeding, the various amount of organic matter(peat and $Bio-com^{(R)}$)was applied on Cd or Cu treated nursery bed soil. No growth difference was observed up to 20mg/kg of Cu treatment. Above 20mg/kg of Cu treatment, the seeding height and top dry weight were decreased but the Cu uptake by seeding was increased with increasing Cu treatment level. The mat formation was poor above 20mg/kg of Cu treatment, however, the seeding peat application level. All peat treatment resulted better mat formation than control. The seeding height and top dry increasing Cd treatment level. The mat formation was not effected by either Cd treatment level or organic matter sources. The effect of peat and $Bio-com{(R)}$ application on Cd uptake by infant rice seeding was not observed at all Cd treatments level.

  • PDF

Effects of Systematic Variation Application of Fe, Mn, Cu, and Zn on These Relative Contents, Uptake Amounts, and Mutual Ratios in Orchardgrass and White Clover (Fe, Mn, Cu, Zn의 Systematic Variation 시비가 Orchardgrass 및 White Clover중 이들의 상대 함량, 탈취량 및 상호비율에 미치는 영향)

  • Jung, Yeun-Kyu
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.4
    • /
    • pp.281-292
    • /
    • 2004
  • This pot experiment was conducted to investigate the effects of systematic variation appling of Fe, Mn, Cu, and Zn on forage performance of orchardgrass and white clover, The treatments of systematic variation were 0/100. 25/75, 50/50. 75/25, and $100/0\%$ in the Fe/Cu, Mn/Zn, and Fe+Cu/Mn+Zn trials, respectively. The treatments of Fe/Mn/Cu/Zn trial were $70\%$ in main-element and $10\%$ in other 3sub-elements. 1 . General differences had been showed in the relative contents, uptake amounts, and mutual ratios of Fe, Mn, Cu, and Zn between orchardgrass and white clover. The effects of Fe application on the all traits were generally insignificant. The Mn and Cu applications, however, showed consistent differences in the all traits. At the high relative content of Mn in the forages influenced by the Mn application, the relative contents of Fe, Cu and Zn were greatly decreased without the significant differences in common content. 2. The increase of uptake amount of each micronutrient was not positively correspond to the yield increase. In some cases, the uptake amount of micronutrient was greatly increased without the significant increase of yield. At the Mn application, the Mn uptake amount was relatively much more increased than increase of the yield. The uptake amount of each element was significantly increased by the application with Mn and Cu. However, it was not in the case of Fe and Zn. 3. The mutual ratios of micronutrients were more influenced by the applications of Mn and Cu, especially Mn, than those by the applications of Fe and Zn. In the Fe/cu trial, the ratios of Fe/Cu showed 6.0~ 10.5 in orchardgrass and 10.2~ $16.4\%$ level of difference in white clover. In the Fe+Cu/Mn+Zn trial, the ratios of Mn/Cu, Mn/Zn, and Fe/Mn were greatly influenced by the treatments. It has been also found that the poor growth of white clover was caused by the unbalanced ratios of Fe/Mn, and it tended to be enhanced by the good applications and mutual ratios of other elements.

Biosorption of Copper by the Immobilized biomass of Barine Brown Algae(Phaeophyta) Hizikia fusiformis (해양 갈조류인 톳의 고정화된 생물질에 의한 구리의 생흡착)

  • 이민규;박경태;감상규
    • Journal of Life Science
    • /
    • v.8 no.2
    • /
    • pp.208-215
    • /
    • 1998
  • It was investigated the biosorption performances of copper by the immobilized biomass of nonliving marine brown alge h. fusiformis by each of the Ca-alginate method(Ca-ALG), Ba-alginate method(Ba-ALG), polyethylene glycol method(PEG), and carrageenan method (CARR). The copper removal performance increased but the copper uptake decreased as the biomass amount was increased. However, the copper uptake by the immobilized biomass increased with increasing initial copper concentration. The copper uptake by the immobilized biomass of the immobilization method decreased in the following sequence; Ca-ALG>Ba-ALG>PEG>CARR among the immoblization emthods. The copper uptake by the immobilized biomass followed the Langmuir isotherm better than the Freundlich isotherm.

  • PDF

Effects of High Phosphorus Supply on Zn and Cu Uptake by Mulberry(Morus alba L.) (고농도(高農度) 인산(燐酸) 수경액(水耕液)중에서 뽕나무의 Zn과 Cu 흡수(吸收))

  • Lee, Wan-Chu;Choi, Young-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.4
    • /
    • pp.249-252
    • /
    • 1993
  • Water culture studies were conducted in the greenhouse with mulberry plants to investigate the nutrient uptake, especially Zn and Cu, under high phosphrous concentration. Mulberry plants were grown with five phosphorus levels(0, 0.2, 0.5, 2.0, 5.0 mM). Leaves and roots were analyzed for water content, total nitrogen, P, K, Ca, Mg, Fe, Mn, total Zn, soluble Zn, Cu, Cl, $NO_3HPO_4$ and $SO_4$. Dry matter increased upto 2.0mM phosphorus level, and then decreased. Water content, total nitrogen, P, K, and Fe in leaves increased with increasing phosphorus level. Total Zn content in leaves showed little change, whereas soluble Zn increased and Cu decreased with increasing phosphorus level. With increasing phosphous level. $SO_4$ and Cl decreased and then sharply increased above 2.0mM phosphorus. Lower uptake of Cu and higher uptake of $SO_4$ and Cl suggest a cause of mulberry yield decline with high accumulation of soil phosphorus.

  • PDF

Biosorption of Pb and Cu by Marine Algae (해조류를 이용한 Pb 및 Cu의 흡착)

  • 서근학;안갑환;조문철;김병진;진형주;홍용기
    • KSBB Journal
    • /
    • v.13 no.4
    • /
    • pp.444-448
    • /
    • 1998
  • Biosorption of Pb and Cu was evaluated for 23 species of marine algae collected from a Korean coast. Among a variety of species for biosorbent potential, Hypnea charoides showed the highest capacity for Pb. An adsorption equilibrium was reached in about 2 hr for Pb and 30 min for Cu. The uptake capacity was 192.8 mg Pb/g biomass and 256 mg Cu/g biomass, respectively. The adsorption parameters for Pb and Cu were determined according to Langmuir model. With an increase in pH value, more negative sites are becoming avaliable for adsorption of pH and Cu, thus the removal of Pb and Cu increases at alkaline conditions. The selectivity of mixture solution shows the uptake order of Pb>Cu>Cr>Cd. When Ca concentration increases in Pb solution, Pb was selectively adsorbed.

  • PDF

Biosorption of Heavy Metals by Saccharomyces uvarum (Saccharomyces uvarum에 의한 중금속 생체흡착에 관한 연구)

  • Ahn, Kab-Hwan;Suh, Kuen-Hack
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.141-141
    • /
    • 1995
  • The waste biomass of Sacchromyces uvarum, used in fermentation industries to produce ethanol, were studied for their ability to absorb various heavy metal ions. Heavy metal ions studied in this research were Cd, Co, Cr, Cu, Ni and Pb. The order of the sorption capacity was Pb>Cu>Co=Cr=Cd>Ni. The living Sacchromyces uvarum exhibited higher metal-uptake capacity than the dead Sacchromyces uvarum. After we compare the uptake capacity of the Sacchromyces uvarum for individual metal ions with for a mixture of them, the following was observed: in the mixed heavy metal solution the uptake capacity was decreased than the one heavy metal solution. The selective uptake was observed when all . the heavy metal ions were dissolved in a mixed solution. The adsorption isotherm modelling was decribed with the Langmuir and Freundlich model. The results were in good agreement with the Langmuir model.

Biosorption of Heavy Metals by Saccharomyces uvarum (Saccharomyces uvarum에 의한 중금속 생체흡착에 관한 연구)

  • 안갑환;서근학
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.527-534
    • /
    • 1995
  • The waste biomass of Sacchromyces uvarum, used in fermentation industries to produce ethanol, were studied for their ability to absorb various heavy metal ions. Heavy metal ions studied in this research were Cd, Co, Cr, Cu, Ni and Pb. The order of the sorption capacity was Pb>Cu>Co=Cr=Cd>Ni. The living Sacchromyces uvarum exhibited higher metal-uptake capacity than the dead Sacchromyces uvarum. After we compare the uptake capacity of the Sacchromyces uvarum for individual metal ions with for a mixture of them, the following was observed: in the mixed heavy metal solution the uptake capacity was decreased than the one heavy metal solution. The selective uptake was observed when all . the heavy metal ions were dissolved in a mixed solution. The adsorption isotherm modelling was decribed with the Langmuir and Freundlich model. The results were in good agreement with the Langmuir model.

  • PDF

Preliminary Study on the Toxicity and Transfer of Heavy Metals and Tributyltin to Seagrass Zostera marina (잘피의 광합성에 대한 중금속 및 TBT의 독성 영향과 중금속 흡수에 대한 연구)

  • Choi, Tae-Seob;Kim, Kwang-Young;Lee, Byeong-Gweon;Lee, Jung-Suk
    • ALGAE
    • /
    • v.20 no.2
    • /
    • pp.157-166
    • /
    • 2005
  • Uptake kinetics of Cd and Zn by leaves and rhizome of the seagrass Zostera marina were examined in controlled laboratory radiotracer experiments. Subsequently, acute toxicity of Cd, Cu and TBT on photosynthetic quantum yield (ΔF/Fm’ of Z. marina were determined, and the differential sensitivities of rapid light curve (RLC) to those harmful substances were also compared. All measurements on photosynthetic activity were determined by chlorophyll a fluorescence method using pulse amplitude modulation (PAM). Metal uptake by Z. marina was saturated with increasing exposure time in leaves and rhizomes. Uptake of Zn by Z. marina was faster than that of Cd. Metal uptake rates in Z. marina decreased with the increase of dissolved metal concentrations and also with the increase of biomass. The adverse effect of TBT on effective quantum yield was stronger than other pollutants. Average acute toxicity on the RLC of the seagrass exposed to TBT and two heavy metals (Cd and Cu) was going to decrease as follows: TBT > Cd > Cu. Our preliminary results in this study suggested that Z. marina potentially can be used as a biomonitor of harmful substances contamination in coastal waters.