• Title/Summary/Keyword: Cu oxide

Search Result 858, Processing Time 0.024 seconds

Influence an Oxide Layer Thickness on Resistivity of Cu Conductive Film and Ink-jet Printing of Cu Nanoparticle Ink

  • Jeong, Sun-Ho;Woo, Kyoo-Hee;Kim, Dong-Jo;Lim, Soon-Kwon;Kim, Jang-Sub;Moon, Joo-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.724-726
    • /
    • 2007
  • We have developed the synthesis method to reduce the surface oxide layer in Cu nanoparticle, which is based on controlling the molecular weight of capping polymer. In addition, we demonstrated how the variation of oxide layer thickness influences the resistivity of conductive Cu film.

  • PDF

Improvement of Adhesion Strength between Cu-based Leadframe and Fpoxy Molding Compound

  • Lee, Ho-Yoing
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.3
    • /
    • pp.23-28
    • /
    • 2000
  • A block-oxide layer was formed on the surface of Cu-based leadframe by chamical oxidation method in order to enhance the adhesion strength between Cu-based leadframe and epoxy molding compound (EMC) Using sandwiched double cantilever beam (SDCB) specimens, the adesion strength was measured in terms of interfacial fracture toughness, G$\sub$IC//Results showed that the black-oxide layer was composed of two kinds of layers: pebble-like Cu$_2$O layer and acicular CuO layer, At the initial stage of oxidation the Cu$_2$O layer was preferentially formed and thickened up to around 200 nm whithin 1 minute of the oxidation time. Then the CuO layer started to from atop of the Cu$_2$O layer and thickened up to around 1300 nm until 20 minutes. As soon as the CuO layer formed, the thickness of Cu$_2$O layer began to reduce and finally reached to around 150 nm. The pre-cleaned and the Cu$_2$O coated leadframes showed almost no adhesion of EMC, however, as the CuO precipitates appeared and became continuous, G$\sub$IC/ increased up to around 80 J/㎡. Further oxidation raised G$\sub$IC/ up. to around 100 J/㎡.

  • PDF

Self-formation of Diffusion Barrier at the Interface between Cu-V Alloy and $SiO_2$

  • Mun, Dae-Yong;Park, Jae-Hyeong;Han, Dong-Seok;Gang, Yu-Jin;Seo, Jin-Gyo;Yun, Don-Gyu;Sin, So-Ra;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.256-256
    • /
    • 2012
  • Cu가 기존 배선물질인 Al을 대체함에 따라 resistance-capacitance delay와 electromigration (EM) 등의 문제들이 어느 정도 해결되었다. 그러나 지속적인 배선 폭의 감소로 배선의 저항 증가, EM 현상 강화 그리고 stability 악화 등의 문제가 지속적으로 야기되고 있다. 이를 해결하기 위한 방법으로 Cu alloy seed layer를 이용한 barrier 자가형성 공정에 대한 연구를 진행하였다. 이 공정은 Cu 합금을 seed layer로 사용하여 도금을 한 후 열처리를 통해 $SiO_2$와의 계면에서 barrier를 자가 형성시키는 공정이다. 이 공정은 매우 균일하고 얇은 barrier를 형성할 수 있고 별도의 barrier와 glue layer를 형성하지 않아 seed layer를 위한 공간을 추가로 확보할 수 있는 장점을 가지고 있다. 또한, via bottom에 barrier가 형성되지 않아 배선 전체 저항을 급격히 낮출 수 있다. 합금 물질로는 초기 Al이나 Mg에 대한 연구가 진행되었으나, 낮은 oxide formation energy로 인해 SiO2에 과도한 손상을 주는 문제점이 제기되었다. 최근 Mn을 합금 물질로 사용한 안정적인 barrier 형성 공정이 보고 되고 있다. 하지만, barrier 형성을 하기 위해 300도 이상의 열처리 온도가 필요하고 열처리 시간 또한 긴 단점이 있다. 본 실험에서는 co-sputtering system을 사용하여 Cu-V 합금을 형성하였고, barrier를 자가 형성을 위해 300도에서 500도까지 열처리 온도를 변화시키며 1시간 동안 열처리를 실시하였다. Cu-V 공정 조건 확립을 위해 AFM, XRD, 4-point probe system을 이용하여 표면 거칠기, 결정성과 비저항을 평가하였다. Cu-V 박막 내 V의 함량은 V target의 plasma power density를 변화시켜 조절 하였으며 XPS를 통해 분석하였다. 열처리 후 시편의 단면을 TEM으로 분석하여 Cu-V 박막과 $SiO_2$ 사이에 interlayer가 형성된 것을 확인 하였으며 EDS를 이용한 element mapping을 통해 Cu-V 내 V의 거동과 interlayer의 성분을 확인하였다. PVD Cu-V 박막은 기판 온도에 큰 영향을 받았고, 200도 이상에서는 Cu의 높은 표면에너지에 의한 agglomeration 현상으로 거친 표면을 가지는 박막이 형성되었다. 7.61 at.%의 V함량을 가지는 Cu-V 박막을 300도에서 1시간 열처리 한 결과 4.5 nm의 V based oxide interlayer가 형성된 것을 확인하였다. 열처리에 의해 Cu-V 박막 내 V은 $SiO_2$와의 계면과 박막 표면으로 확산하며 oxide를 형성했으며 Cu-V 박막 내 V 함량은 줄어들었다. 300, 400, 500도에서 열처리 한 결과 동일 조성과 열처리 온도에서 Cu-Mn에 의해 형성된 interlayer의 두께 보다 두껍게 성장했다. 이는 V의 oxide formation energy가 Mn 보다 작으므로 SiO2와의 계면에서 산화막 형성이 쉽기 때문으로 판단된다. 또한, $V^{+5}$이온 반경이 $Mn^{+2}$이온 반경보다 작아 oxide 내부에서 확산이 용이하며 oxide 박막 내에 여기되는 전기장이 더 큰 산화수를 가지는 V의 경우 더 크기 때문으로 판단된다.

  • PDF

Photoelectrochemical Characteristics for Cathodic Electrodeposited Cu2O Film on Indium Tin Oxide (음극전착법을 이용한 Cu2O 막의 광전기 화학적 특성)

  • 이은호;정광덕;주오심;최승철
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.183-189
    • /
    • 2004
  • Cuprous oxide (Cu$_2$O) thin films are cathodically deposited on Indium Tin Oxide (ITO) substrate. The as-deposited films were heat-treated at 30$0^{\circ}C$ to obtain Cu$_2$O. After the heat treatment, the film was changed from Cu metal into Cu$_2$O phase. The phase, morphology and photocurrent density of the films were dependent on the preparation conditions of deposition time, applied voltage, and the duration of heat treatment. The Cu$_2$O films were characterized by X-Ray Diffractometer (XRD) and Scanning Electron Microscope (SEM). The apparent grain size of the films formed by the normal method was larger than those grown by the pulse method. The CU$_2$O film what was deposited at -0.7 V for 300 sec and then, calcined at 30$0^{\circ}C$ for 1 h showed the predominant photocurrent density of 1048 $\mu$A/$\textrm{cm}^2$. And the stability of Cu$_2$O electrodes were improved with chemically deposited TiO$_2$ thin films on Cu$_2$O.

Use of a capacitance voltage technique to study copper drift diffusion in low-k polyimide (C-V Technique을 이용한 low-k polyimide로의 구리의 drift diffusion 연구)

  • Choi, Yong-Ho;Lee, Heon-Yong;Kim, Jee-Gyun;Kim, Jung-Woo;Kim, Yoo-Kyuong;Park, Jin-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.137-140
    • /
    • 2003
  • Cu+ ions drift diffusion in different dielectric materials is evaluated. The diffusion is investigated by measuring shift in the flatband voltage of capacitance/voltage measurements on Cu gate capacitors after bias temperature stressing. At a field of 1.lMV/cm and temperature $200^{\circ}C$, $250^{\circ}C$, $300^{\circ}C$ for 1H, 2H, 5H. The Cu+ ions drift rate of polyimide$(2.8{\leq}k{\leq}3.2)$ is considerably lower than thermal oxide. Also Cu+ drift rate of polyimide is similar to PECVD oxide. But, polyimide film is even more resistant to Cu drift diffusion and thermal effect than Thermal oxide, PECVD oxide: This results got a comparative reference. The important conclusion is that polyimide film is strongly dielectric material by thermal effect and Cu drift diffusion.

  • PDF

Study on the hydrogen production using the metal oxide (Cu-ferrite) (금속산화물(Cu-ferrite)를 이용한 수소제조 연구)

  • Park, Chu-Sik;Seo, In-Tai;Kim, Jung-Min;Lee, Sang-Ho;Hwang, Gap-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.3
    • /
    • pp.201-207
    • /
    • 2004
  • Redox characteristics of metal oxide for hydrogen production by thermochemical water-splitting were investigated. $CuFe_2O_4$ as a redox pair that had a different molar ratio of Cu and Fe were prepared by co-precipitation method. Hydrogen production consisted of water-splitting step and thermal reduction step was performed below 1200K. Redox characteristics of Cu-ferrites were studied using the thermal gravimetric analysis technique. Also, structure change of Cu-ferrite during thermal reduction was investigated using the high temperature controlled XRD. In results, oxygen release of Cu-ferrite during the thermal reduction was initiated at oxygen site combined with Cu. Consequently, oxygen release amount of Cu-ferrite was increased with increase of Cu molar ratio of Cu-ferrite. It was found that thermal reduction of Cu-ferrite was begun at $875^\circ{C}$. It was confirmed that structure of Cu-ferrite was changed to metal and cation excess metal oxide during the thermal reduction step.

Fabrication Process of Al2O3/Cu Nanocomposite by Dispersion and Reduction of Cu Oxide (CU Oxide 분산 및 환원에 의한 Al2O3/Cu 나노복합재료의 제조공정)

  • Ko, Se-Jin;Min, Kyung-Ho;Kang, Kae-Myung;Kim, Young-Do;Moon, In-Hyung
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.656-660
    • /
    • 2002
  • It was investigated that $Al_2$$O_3$/Cu nanocomposite powder could be optimally prepared by dispersion and reduction of Cu oxide, and suitably consolidated by employing pulse electric current sintering (PECS) process. $\alpha$-$Al_2$$O_3$ and CuO powders were used as elemental powders. In order to obtain $Al_2$O$_3$ embedded by finely and homogeneously dispersed CuO particles, the elemental powders were high energy ball milled at the rotating speed of 900 rpm, with the milling time varying up to 10 h. The milled powders were heat treated at $350^{\circ}C$ in H$_2$ atmosphere for 30 min to reduce CuO into Cu. The reduced powders were subsequently sintered by employing PECS process. The composites sintered at $1250^{\circ}C$ for 5 min showed the relative density of above 98%. The fracture toughness of the $Al_2$$O_3$/Cu nanocomposite was as high as 4.9MPa.$m^{1}$2//, being 1.3 times the value of pure $Al_2$$O_3$ sintered under the same condition.

Effect of Surface Pretreatment on Film Properties Deposited by Electro-/Electroless Deposition in Cu Interconnection (반도체 구리 배선공정에서 표면 전처리가 이후 구리 전해/무전해 전착 박막에 미치는 영향)

  • Lim, Taeho;Kim, Jae Jeong
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • This study investigated the effect of surface pretreatment, which removes native Cu oxides on Cu seed layer, on subsequent Cu electro-/electroless deposition in Cu interconnection. The native Cu oxides were removed by using citric acid-based solution frequently used in Cu chemical mechanical polishing process and the selective Cu oxide removal was successfully achieved by controlling the solution composition. The characterization of electro-/electrolessly deposited Cu films after the oxide removal was then performed in terms of film resistivity, surface roughness, etc. It was observed that the lowest film resistivity and surface roughness were obtained from the substrate whose native Cu oxides were selectively removed.

Adhesion and Interface Chemical Reactions of Cu/CuO/Polyimide System (Cu/CuO/Polyimide 시스템의 접착 및 계면화학 반응)

  • Lee, K.W.;Chae, H.C.;Choi, C.M.;Kim, M.H.
    • Korean Journal of Materials Research
    • /
    • v.17 no.2
    • /
    • pp.61-67
    • /
    • 2007
  • The magnetron reactive sputtering was adopted to deposit CuO buffer layers on the polyimide surfaces for increasing the adhesion strength between Cu thin films and polyimide, varying $O_2$ gas flow rate from 1 to 5 sccm. The CuO oxide was formed through all the $O_2$ gas flow rates of 1 to 5 sccm, showing the highest value at the 3 sccm $O_2$ gas flow rate. The XPS analysis revealed that the $Cu_2O$ oxide was also formed with a significant ratio during the reactive sputtering. The adhesion strength is mainly dependent on the amount of CuO in the buffer layers, which can react with C-O-C or C-N bonds on the polyimide surfaces. The adhesion strength of the multi-layered Cu/buffer layer/polyimide specimen decreased linearly as the heating temperature increased to $300^{\circ}C$, even though there showd no significant change in the chemical state at the polyimide interface. This result is attributed to the decrease in surface roughness of deposited copper oxide on the polyimide, when it is heated.