• 제목/요약/키워드: Cu nano wire

검색결과 22건 처리시간 0.017초

Czochralski법을 이용한 금속 단결정의 성장과 구조적, 전기적 성질에 관한 연구 (The Fabrication of the Single Crystal Wire from Cu Single Crystal Grown by the Czochralski Method and its Physical Properties)

  • 박정훈;차수영;박상언;김성규;조채룡;박혁규;김형찬;정명화;정세영
    • 한국결정학회지
    • /
    • 제16권2호
    • /
    • pp.141-148
    • /
    • 2005
  • It is well known that the general metals have a lot of grain boundaries. The grain boundaries play a negative role to increase the resistivity and to decrease the conductivity. The small resistivity and the large conductivity have been a goal of the material scientists, and no signal noise, perfect signal transfer, and the realization of the real sound are the dream of electronic engineers and audio manias. Generally, oxygen free copper (OFC) and Ohno continuous casting (OCC) copper cables have been used for the purpose of the precise signal transfer and low noise. However they still include a lot of grain boundaries. In our study, we have grown the single crystal by the Czochralski method and succeeded to produce single crystal wires from the crystal in the dimension of $0.5{\times}0.5{\times}2500mm$. The produced wire still possesses very good single crystal properties. We observed the structure of the wire, and measured the resistance and impedance. Glow Discharge Spectrometer (GDS) was used for analyzing the compositions of copper single crystals and commercial copper. Current-Voltage curve, resistance, total harmonic distortion and speaker frequency response were measured for comparing electrical and acoustic properties of two samples.

메탄 대향류 확산화염내 수소를 첨가한 탄소나노물질 합성에 관한 연구 (Study on synthesis of carbon nanomaterials by hydrogen mixing in counterflow methane diffusion flames)

  • 신우중;최정식;윤석훈;이현식;최재혁
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2011년도 후기공동학술대회 논문집
    • /
    • pp.88-89
    • /
    • 2011
  • The study on synthesis of carbon nanomaterials by H2 mixing in counterflow methane diffusion flames has been experimentally conducted. We have also investigated on effect of catalyst and temperature in flame. The counterflow flame was formed by many kind of gas (fuel side using $CH_4-H_2-N_2$ and oxidizer side $N_2-O_2$) and nitrogen shields discharge on each other side to cut off oxidizer of the atmosphere. Ferrocene was used as a metal catalyst for CNTs synthesis. substrate was used to deposit carbon nanomaterials and these were analyzed by FE-SEM. We could find that carbon nanotubes and many kind of carbon nano materials were formed in Cu wire substrate, through this experiment.

  • PDF