• 제목/요약/키워드: Cu composites

검색결과 225건 처리시간 0.03초

Copper-clad Aluminium 복합재료의 정수압 압출시 다이 각이 미치는 효과 (Effect of Die Angle in the Hydrostatic Extrusion of Copper-clad Aluminium Composites)

  • 한운용;박훈재;윤덕재;정하국;김승수;김응주;이경엽
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.414-417
    • /
    • 2003
  • A copper-clad aluminium composite bar is lighter and less expressive than a commercial copper alloy bar. Copper-clad aluminium composite bar can be fabricated by hot hydrostatic extrusion process. In this work, the effect of die angle on the compressive properties of copper-clad aluminium composites fabricated using hydrostatic extrusion process was investigated experimentally. The results showed that optimum half die angle was in the range of 40$^{\circ}$ to 50$^{\circ}$ for an extrusion ratio of 19. The results also showed that the half die angle had little influence on the compressive strength of copper-clad aluminium composites. A diffusion layer increased with increasing die angle.

  • PDF

Fabrication and properties of in-situ Al/AlB2 composite reinforced with high aspect ratio borides

  • Kayikci, Ramazan;Savas, Omer
    • Steel and Composite Structures
    • /
    • 제19권3호
    • /
    • pp.777-787
    • /
    • 2015
  • Production and properties of metal matrix composites reinforced with an in-situ high aspect ratio $AlB_2$ flake have been investigated. Boron 2.2wt.% was dissolved in pure Al and Al-Cu alloy at $1300^{\circ}C$ by adding directly boron oxide which resulted in 4 vol.% reinforcing phase. The in-situ $AlB_2$ flake concentration was increased up to 30 vol.% in order to increase the tensile strength of the composites. Hardness, compressive strength and tensile strength of the composite were measured and compared with their matrix. Results showed that 30 vol.% $AlB_2/Al$ composite show a 193% increase in the compressive strength and a 322% increase in compressive yield strength. Results also showed that ductility of composites decreases with adding $AlB_2$ reinforcements.

TiC 입자강화 Mg 복합재료에 있어서 입자 분산거동 및 기계적 성질에 미치는 합금원소의 영향 (Effect of Alloying Elements on Particulate Dispersion Behavior and Mechanical Properties in TiC Particulate Reinforced Magnesium Matrix Composites)

  • 임석원;장융랑;박용진
    • 한국주조공학회지
    • /
    • 제14권3호
    • /
    • pp.240-247
    • /
    • 1994
  • TiC particulate reinforced magnesium matrix composites were fabricated by melt stirring method. The effect of alloying elements on TiC particulate dispersion into molten magnesium and mechanical properties were investigated. The incorporation time is defined as the time required for dispersion of solid particles into molten metal. The incorporation time of TiC particles into molten pure magnesium was remarkably shorter and the particulated dispersion was more uniform than that of pure aluminum which was reported previously. The incorporation time was, prolonged by the addition of Al, Bi, Ca, Ce, Pb, Sn or Zn. The tensile strength increased and elongation decreased by the addition of Cu or Sn into the matrices and composites. Although, the tensile strength of the matrices and composites increased by alloying with Ca or Ce, the maximum elongation was observed at a content of about 1% for the matrices. By alloying with Zn, the tensile strength increased for the matrices and composites, but the elongation of the matrices increased. The pure magnesium and its alloy matrix composites reinforced with 20vol% TiC have the tensile strength of about 400MPa. This value is compared with the tensile strength of SiC whisker reinforced magnesium matrix composites fabricated by liquid infiltration method at the same volume fraction. There fore, the melt strirring method which has the advantages of simple process is considered to be efficient in fabricating magnesium matrix composites.

  • PDF

저온 분사 코팅법으로 제조된 Cu/CNT 복합 코팅층의 미세조직 및 물성 연구 (A Study on the Microstructure and Physical Properties of Cold Sprayed Cu/CNT Composite Coating)

  • 권성희;박동용;이대열;어광준;이기안
    • 대한금속재료학회지
    • /
    • 제46권3호
    • /
    • pp.182-188
    • /
    • 2008
  • Carbon nanotubes(CNTs) have outstanding mechanical, thermal, and electrical properties. Thus, by placing nanotubes into appropriate matrix, it is postulated that the resulting composites will have enhanced properties. Cold spray can produce thick metal-based composite coatings with very high density, low oxygen content, and phase purity, which leads to excellent physical properties. In this study, we applied cold spray coating process for the consolidation of Cu/CNT composite powder. The precursor powder mixture, in which CNTs were filled into copper particles, was prepared to improve the distribution of the CNT in copper matrix. Pure copper coating was also conducted by cold spraying as a reference. Annealing heat treatment was applied to the coating to examine its effect on the properties of the composite coating. The hardness of Cu/CNT composite coating represented similar value to that of pure copper coating. It was importantly found that the electrical conductivity of the Cu/CNT composite coating significantly increased from 53% for the standard condition to almost 55% in the optimized condition, taking annealed ($500^{\circ}C/1hr$.) copper coating as a reference (100%). The thermal conductivity of Cu/CNT composite coating layer was higher than that of pure Cu coating. It was also found that the electrical and thermal conductivities of Cu/CNT composite could be improved through annealing heat treatment. The microstructural evolution of Cu/CNT coating was also investigated and related to the macroscopic properties.

국부용융성장법으로 제조한 (Sm/Y)-Ba-Cu-0계 고온복합초전도체의 CeO2첨가에 따른 초전도특성 (Superconducting Properties of (Sm/Y)-Ba-Cu-0 High Tc Composite Superconductors with CeO2 Additive by Zone-Melt Textured Growth)

  • 김소정
    • 한국전기전자재료학회논문지
    • /
    • 제15권3호
    • /
    • pp.269-274
    • /
    • 2002
  • (Sm/Y)-Ba-Cu-O system high Tc composite superconductors with/without $CeO_2$ additive were directionally grown by zone-melting process, haying large temperature gradient, In air atmosphere. Cylindrical green rods of $({Sm/y})_{1.8}Ba_{2.4}Cu_{3.4}O_x$ [(Sm/Y)1.8] composite oxides by cold isostatic pressing(CIP) method using rubber mold were fabricated. The microstructure and superconducting properties were investigated by XRD, SEM, TEM and SQUID magnetometer. The size of nonsuperconducting $({Sm/y})_2BaCuO_5$ inclusions of the melt-textured (Sm/Y)1.8 sample with CeO$_2$ additive were remarkably reduced and uniformly distributed within the superconducting (Sm/Y)1.8 matrix. Both samples, with/without $CeO_2$ additive, showed an onset Tc $\geq$ 90 K and sharp superconducting transition. The critical current density Jc value of the $CeO_2$ addictive were $1{\times}10^5A/\textrm{cm}^2$ in 77 K, 0 Tesla.

존멜팅법으로 제조한 (YNdSm)-Ba-Cu-O계 고온복합초전도체의 미세구조 및 전기적 특성 (Microstructure and Electrical Properties of (YNdSm)-Ba-Cu-O High Tc Composite Superconductors by Zone Melting Process)

  • 김소정;이상헌
    • 한국전기전자재료학회논문지
    • /
    • 제29권2호
    • /
    • pp.110-113
    • /
    • 2016
  • (YNdSm)-Ba-Cu-O system high Tc composite superconductors were directionally grown by zone melting process, having large temperature gradient, in air atmosphere. Cylindrical green rods of $(YNdSm)_{1.8}Ba_{2.4}Cu_{3.4}O_x$ [(YNS)1.8]composite oxides by CIP (cold isostatic pressing) method using rubber mold were fabricated. The microstructure and superconducting properties were investigated by XRD, TEM and SQUID magnetometer. The size of nonsuperconducting $(YNdSm)_2BaCuO_5$ inclusions of the melt-textured (YNS)1.8 sample with $CeO_2$ additive were remarkably reduced and uniformly distributed within the superconducting (YNS)1.8 matrix. (YNS)1.8 samples, with / without $CeO_2$ additive, showed an onset $T_c{\geq}90K$ and sharp superconducting transition. The critical current density $J_c$ value of the (YNdSm)1.8 superconductor with $CeO_2$ additive were 840 A, $1.2{\times}104A/cm^2$ in 77 K, 0 Tesla by direct current transport method.

알루미늄-스테인레스스틸-구리 경사기능재료의 제조 및 특성평가 (Fabrication and Evaluation of the Al-STS-Cu Functionally Graded Materials)

  • 박광재;김다솜;권한상
    • Composites Research
    • /
    • 제36권4호
    • /
    • pp.241-245
    • /
    • 2023
  • 비철계 합금인 알루미늄과 구리 합금은 전기 및 열전도성이 우수하지만 철계 합금대비 상대적으로 기계적 특성은 낮다. 철계 합금인 스테인레스 스틸은 비철계인 알루미늄과 구리 대비 가공성은 나쁘지만 기계적 특성과 내부식성이 우수하여 고강도 공업용 소재로 사용되고 있다. 본 연구에서는 알루미늄과 구리 그리고 스테인레스 스틸을 융복합화 하여 기능 맞춤형 경사기능재료를 분말프로세스를 이용하여 제조하였다. 제조된 경사기능재료는 구리와 철계 합금 대비 경량의 우수한 표면 경도를 나타내었으며 열전도도 역시 단일 알루미늄과 스테인레스 스틸 소재 보다 높은 값을 나타내었다.

CNT/Cu 혼합분말의 ECAP 공정 시 치밀화 및 소성변형 거동 해석 (Analyses of Densification and Plastic Deformation during Equal Channel Angular Pressing of CNT/Cu Powder Mixtures)

  • 팜쾅;윤승채;정영기;김형섭
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.123-126
    • /
    • 2006
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve full density of carbon nanotube (CNT)/metal matrix composites with superior mechanical properties by improved particle bonding and least grain growth, which were considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (equal channel angular pressing), the most promising method in SPD, was used for the CNT/Cu powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 route C passes was conducted at room temperature.

  • PDF

냉간압축하에서 혼합금속분말의 치밀화 모델 (A Densification Model for Mixed Metal Powder under Cold Coompaction)

  • 조진호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.112-118
    • /
    • 2000
  • Densification behavior of mixed copper and tool steel powder under cold compaction was investigated. By mixing the yield functions proposed by Fleck et al. and by Gurson for pure powder in terms of volume fractions and contact numbers of Cu powder new mixed yield functions were employed for densification of powder composites under cold compaction. The constitutive equations were implemented into a finite element program (ABAQUS) to compare with experimental data for densificatiojn of mixed powder under cold isostatic pressing and cold die compaction. finite element calculations by using the yield functions mixed by contact numbers of Cu powder agreed better with experimental data than those by volume fractions of Cu powder.

  • PDF

Mercury Adsorption Behaviors of Copper/Activated Carbons by Electroless Plating

  • 배경민;김병주;박수진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.304-304
    • /
    • 2009
  • In this study, the adsorption behaviors of mercury ions on the electroless Cu-plated activated carbons have been investigated. The amount of copper on activated carbons have been confirmed by atomic absorption spectrophotometer (AAS). The surface properties of the ACs studied have been characterized by using Boehm's titration method and scanning electron microscopy (SEM).Experimental results showed the adsorption capacity of mercury ions was increased as the electroless Cu plating. This was probably due to the introduction of copper on ACs leaded to an increase in the surface basicity.

  • PDF