• Title/Summary/Keyword: Cu alloys

Search Result 676, Processing Time 0.023 seconds

Studies on Ion-exchange Chromatography of Elements in Special Nonferrous Alloys (비철특수합금에서 금속원소의 이온교환 크로마토그라프에 관한 연구)

  • Kyung Woong Lee;Young Jin Yoo
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.178-182
    • /
    • 1985
  • The purpose of this study was to develop a separation method of Zn(II), Cu(II) and Mg(II), by ion exchange chromatography using cation exchange resion (Dowex 50w${\times}$8, 80-100 mesh) and anion exchange (Amberlite IRA-400). Ion exchange resions were packed into 25 ${\times}$ 2cm ID column and flow rate was controlled to 0.30 ml/min. Good eluents for separation of nonferrous metal ions such as Zn(II), Cu(II), Mg(II) were as follow: 0.5M $NaNO_3$ (pH 3.1), 0.2~0.5M HCl + 50~60% Acetone, and 1M HAc + 0.1M NaAcf(pH 3.7) aqueous solution. The mixed solution of 0.1M NaAc(pH 3.7), 0.5M HCl + 50% Acetone were found to be the best eluent for step elution. Analysis of metals were determined by atomic absorption spectrophotometer. In addition, separated Zn(II) fraction was obtained by eluted with 0.12N HCl and 1.5N $NH_4OH$ aqueous solution. This solution was titrated by the E. D. T. A.

  • PDF

Effect of Microstructure on the Environmentally Induced Cracking Behavior of Al-Zn-Mg-Cu-Zr Aluminum Alloy

  • Ghosh, Rahul;Venugopal, A.;Pradeep, PI;krishna, L. Rama;Narayanan, P. Ramesh;Pant, Bhanu;Cherian, Roy M
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.101-108
    • /
    • 2018
  • AA7010 is an Al-Zn-Mg-Cu alloy containing Zr, developed as an alternate to traditional AA7075 alloy owing to their high strength combined with better fracture toughness. It is necessary to improve the corrosion resistance and surface properties of the alloy by incorporating plasma electrolytic oxidation (PEO) method. AA7010-T7452 aluminum alloy has been processed through the forging route with multi-stage working operations, and was coated with $10{\mu}m$ thick $Al_2O_3$ ceramic aluminina coating using the plasma electrolytic oxidation (PEO) method. The corrosion, stress corrosion cracking (SCC) and nano-mechanical behaviours were examined by means of potentiodynamic polarization, slow strain rate test (SSRT) and nano-indentation tests. The results indicated that the additional thermomechanical treatment during the forging process caused a fully recrystallized microstructure, which lead to the poor environmental cracking resistance of the alloy in 3.5% NaCl solution, despite the overaging treatment. Although the fabricated PEO coating improved general corrosion resistance, the brittle nature of the coating did not provide any improvement in SCC resistance of the alloy. However, the hardness and elastic modulus of the coating were significantly higher than the base alloy.

Magnetic Properties and Thermomagnetic Analysis of Cast and Hot-Pressed Pr, Nd-Fe-B Magnets (주조 및 열간압축된 Pr, Nd-Fe-B계 영구자석의 열자기 분석과 자기적 특성)

  • 김동엽;이동구;정원용
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.1
    • /
    • pp.37-43
    • /
    • 1992
  • Minor phases in cast and hot-pressed R(R=Pr, Nd)-Fe-B magnet were investigated through thermomagnetic analysis. The relationship between minor phases and coercivities of R-Fe-B magnets was studied. ${\alpha}-Fe$ and $Nd_{2}Fe_{17}$ were precipitated in as-cast Pr-Fe-B and Nd-Fe-B alloys respectively. These phases were considered to deteriorate the magnetic properties of R-Fe-B magnets. During the heat treatment, ${\alpha}-Fe$ and $Nd_{2}Fe_{17}$ were annihilated and the magnetic properties of cast R-Fe-B magnet were improved. Hot-pressed Nd-Fe-B magnet showed better thermal stability than sintered magnet.

  • PDF

Production of Dispersion-strengthened Cu-TiB2 Alloys by Ball-milling and Spark-plasma Sintering

  • Kwon, Dae-Hwan;Kum, Jong-Won;Nguyen, Thuy Dang;Dudinad, Dina;Choi, Pyuck-Pa;Kim, Ji-Soon;Kwon, Young-Soon
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1205-1206
    • /
    • 2006
  • Dispersion-strengthened copper with $TiB_2$ was produced by ball-milling and spark plasma sintering (SPS).Ball-milling was performed at a rotation speed of 300rpm for 30 and 60min in Ar atmosphere by using a planetary ball mill (AGO-2). Spark-plasma sintering was carried out at $650^{\circ}C$ for 5min under vacuum after mechanical alloying. The hardness of the specimens sintered using powder ball milled for 60min at 300rpm increased from 16.0 to 61.8 HRB than that of specimen using powder mixed with a turbular mixer, while the electrical conductivity varied from 93.40% to 83.34%IACS. In the case of milled powder, hardness increased as milling time increased, while the electrical conductivity decreased. On the other hand, hardness decreased with increasing sintering temperature, but the electrical conductiviey increased slightly

  • PDF

Effect of Alloying on the Microstructure and Fatigue Behavior of Fe-Ni-Cu-Mo P/M Steels

  • Bohn, Dmitri A.;Lawley, Alan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1997.04a
    • /
    • pp.34-34
    • /
    • 1997
  • The effect of alloying mode and porosity on the axial tension-tension fatigue behavior of a P/M steel of nominal composition Fe-4w/o Ni-1.5w/o Cu-O.5w/o Mo-O.5w/o C has been evaluated. Alloying modes utilized were elemental powder mixing, partial alloying(distaloy) and prealloying by water atomization; in each case the carbon was introduced as graphite prior to sintering. Powder compacts were sintered($1120{\circ}C$/30 min.) in 7Sv/o $H_2$/25v/o $N_2$ to densities in the range 6.77-7.2 g/$cm^3$. The dependence of fatigue limit response on alloying mode and porosity was interpreted in terms of the constituent phases and the pore and fracture morphologies associated with the three alloying modes. For the same nominal composition, the three alloying modes resulted in different sintered microstructures. In the elemental mix alloy and the distaloy, the major constituent was coarse and fine pearlite, with regions of Ni-rich ferrite, Ni-rich martensite and Ni-rich areas. In contrast, the prealloy consisted primarily of martensite by with some Ni-rich areas. From an examination of the fracture surfaces following fatigue testing it was concluded that essentially all of the fracture surfaces exhibited dimpled rupture, characteristic of tensile overload. Thus, the extent of growth of any fatigue cracks prior to overload was small. The stress amplitude for the three alloying modes at 2x$l0^6$ was used for the comparison of fatigue strengths. For load cycles <3x$l0^5$, the prealloy exhibited optimum fatigue response followed by the distaloy and elemental mix alloy, respectively. At load cycles >2x$l0^6$, similar fatigue limits were exhibited by the three alloys. It was concluded that fatigue cracks propagate primarily through pores, rather than through the constituent phases of the microstructure. A decrease in pore SIze improved the S-N behavior of the sintered steel.

  • PDF

Effect of Corrosion Atmosphere and Strain Rate on the Stress Corrosion Cracking of High Strength 7xxx Aluminum Alloy (고강도 7xxx 알루미늄 합금의 응력부식균열에 미치는 부식환경과 응력속도의 영향)

  • Yun, Yeo-Wan;Kim, Sang-Ha
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.3
    • /
    • pp.121-128
    • /
    • 2008
  • High strength 7xxx aluminum alloys have been applied to automotive bump back beam of the some limited model for light weight vehicle. The aluminum bump back beam is manufactured through extrusion, bending and welding. The residual stress given on these processes combines with the corrosive atmosphere on the road spreaded with corrosive chemicals to melt snow to occur the stress corrosion cracking. The composition of commercial 7xxx aluminum has Zn/Mg ratio about 3 and Cu over 2 wt% for better strength and stress corrosion cracking resistivity. But this composition isn't adequate for appling to the automotive bump back beam with high resistance to extrusion and bad weldability. In this study the composition of 7xxx aluminum alloy was modified to high Zn/Mg ratio and low Cu content for better extrusion and weldability. To estimate the resistivity against stress corrosion cracking of this aluminum alloy by slow strain rate test, the corrosion atmosphere and strain rate separate the stress corrosion cracking from conventional corrosion must be investigated. Using 0.6 Mol NaCl solution on slow strain rate test the stress corrosion cracking induced fracture was not observed. By adding 0.3% $H_2O_2$ and 0.6M $Na_2SO_4$ to 1M NaCl solution, the corrosion potential and current density of polarization curve moved to active potential and larger current density, and on the slow strain rate test the fracture energy in solution was lower than that in pre-exposure. These mean the stress corrosion cracking induced fracture can be estimated in this 1M NaCl + 0.3% $H_2O_2$ + 0.6M $Na_2SO_4$ solution. When the strain rate was below $2{\times}10^{-6}$, the stress corrosion cracking induced fracture start to be observed.

Development of the 925 Silver Alloyed Tension Jewelry with Press Forming Process (가압성형법을 이용한 925 은합금의 텐션형 주얼리 개발)

  • Song, Oh-Sung;Kim, Sang-Yeob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.805-810
    • /
    • 2006
  • Defects in the conventional casting process of silver jewelry can result in famished products of mediocre hardness. To overcome the shortcomings of conventional methods, we proposed new press forming process, which involves applying uniaxial pressure on casting 92.5%Ag-6.5%Cu-1%Zn ring elements and shaping with a lath. We investigated Vickers hardness, density, and microstructure evolution by changing the applied uniaxial pressure. We report that our newly proposed process can increase the hardness up to 2.3 times and decrease average grain size by 50%. Our method leads to drastic mechanical property enhancements, and is thus suitable for casting tension-style jewelry.

  • PDF

Chemical Compositions and Lead Isotopic Ratios of Bronze Spoons Excavated from Coastal Areas of Mado Island, Taean County (태안 마도해역 출수 청동숟가락의 성분조성과 납동위원소비)

  • Han, Woo Rim;Kim, So Jin;Hwang, Jin Ju
    • Korean Journal of Heritage: History & Science
    • /
    • v.49 no.3
    • /
    • pp.4-11
    • /
    • 2016
  • This study compares eight bronze spoons in the Goryeo Dynasty and analyzes their components and lead isotopes in order to confirm the relationship between their production sites and excavation sites. Most of the excavated spoons have elliptical heads, and their handles are categorized into two types. Bronze spoons are made of binary Cu-Sn alloys, but Pb is not added. The same artifacts can have different trace elements depending on location, and the spoons had high Ag content. According to an analysis of their lead isotopic ratio, they were made with raw materials produced in Zone 3 of the South Korean galena map. If the data of the trace elements in the raw ores of the bronze is accumulated, it can be used to indicate the provenance of the artifacts.

Electrical Properties of Chip Typed Shunt Resistor Composed of Carbon Nanotube and Metal Alloy for the Use of DC Current Measurement (DC 전류 측정을 위한 탄소나노튜브와 합금으로 구성된 칩 타입 션트저항체의 전기적 특성)

  • Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.126-129
    • /
    • 2021
  • We fabricated plate typed shunt resistors composed of carbon nanotube (CNT) and metal alloy for measuring DC current. CNT plates were prepared from dispersed CNT/Urethane solution by squeezing method. Cu/Ni alloys were prepared from composition-designed alloy wires for adjusting the temperature coefficient of resistance (TCR) by pressing them. As well, we fabricated a hybrid resistor by squeezing the CNT/Urethane solution on the metal alloy plate directly. In order to confirm the composition ratio of the Cu/Ni alloy, we used an energy-dispersed X-ray spectroscopy (EDX). Cross-section and surface morphology were analyzed by using a scanning electron microscopy (SEM). Finally, we measured the initial resistance of 2.35 Ω at 25℃ for the CNT paper resistor, 7.56 mΩ for the alloy resistor, and 7.38 mΩ for the hybrid resistor. The TCR was also measured to be -778.72 ppm/℃ at the temperature range between 25℃ to 125℃ for the CNT paper resistor, 824.06 ppm/℃ for the alloy resistor, and 17.61 ppm/℃ for the hybrid resistor. Some of the hybrid resistors showed a near-zero TCR of 1.38, -2.77, 2.66, and 5.49 ppm/℃, which might be the world best-value ever reported. Consequently, we could expect an error-free measurement of the DC current using this resistor.

Thermal and Mechanical Properties of Rapidly Solidified Zr-Ni-Cu-Al-Ti Alloy (급냉응고법으로 제조한 Zr-Ni-Cu-Al-Ti 합금의 열적, 기계적 성질)

  • Choe, Ik-Seok;Han, Tae-Gyo;Ji, Yong-Gwon;Im, Byeong-Mun;Kim, Yeong-Hwan;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.11 no.3
    • /
    • pp.171-177
    • /
    • 2001
  • The thermal and mechanical properties of amorphous Z $r_{62-x}$N $i_{10}$C $u_{20}$A $l_{8}$ $Ti_{x}$ (x=3, 6, 9at%) alloys were investigated. The crystallization process was confirmed as amorphous longrightarrow amorphous + Z $r_2$A $l_3$+ Zr + (Ni,Ti) longrightarrow Z $r_2$Cu + Al + (Ni,Ti) for 3at%Ti, amorphous longrightarrow amorphous + Al longrightarrow $Al_2$Ti + NiZr + CuTi for 6at%Ti and amorphous longrightarrow amorphous + Zr + Al longrightarrow Zr + $Al_2$Zr + Al $Ti_3$+ CuTi for 9at%Ti. lickers hardness ( $H_{v}$ ) increased with increasing volume fraction( $V_{f}$ ) of pricipitates for all concerned compositions. Tensile fracture strength ($\sigma_{f}$ ) showed a maximum value 1219MPa at $V_{f}$ = 38% for 3at%Ti, 1203MPa at $V_{f}$ = 2% for 6at%Ti and 1350MPa at $V_{f}$ = 5% for 9at%Ti. The $\sigma_{f}$ was rapidly decreased after showing the maximum value. The $V_{f}$ corresponding to rapidly decreased $\sigma_{f}$ coincided with the $V_{f}$ transited from ductile to brittle fracture surface.ace.

  • PDF