• Title/Summary/Keyword: Cu additive

Search Result 186, Processing Time 0.029 seconds

The Influence of Gelatin Additives on the Mechanical Properties of Electrodeposited Cu Thin Films (젤라틴 첨가에 의한 구리 박막의 기계적 특성 변화)

  • Kim, Minho;Cha, Hee-Ryoung;Choi, Changsoon;Kim, Jong-Man;Lee, Dongyun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.10
    • /
    • pp.884-892
    • /
    • 2010
  • To modify the physical properties of Cu thin films, gelatin is generally used as an additive. In this study, we assessed the effect of gelatin on the mechanical properties of electrodeposited Cu films. For this purpose, Cu/gelatin composite films were fabricated by adding 100 ppm of gelatin to an electrolyte, and tension and indentation tests were then performed. Additional tests based on pure Cu films were also performed for comparison. The Cu films containing gelatin presented a smaller grain size compared to that of pure Cu films. This increased the hardness of the Cu films, but addition of gelatin did not significantly affect the elastic modulus of the films. Cu films prepared at room temperature showed no significant change in the yield strength and tensile strength with an addition of gelatin, but we observed a dramatic decrease in the elongation. In contrast, Cu films prepared at $40^{\circ}C$ with gelatin presented a significant increase in the yield strength and tensile strength after the addition of gelatin. Elongation was not affected by adding gelatin. Presumably, the results would be closely related to the preferred orientation of the Cu thin film with the addition of gelatin and at temperatures that lead to a change in the microstructure of the Cu thin films.

Effect of Nonsolvent and Metal Salt Concentration on Oxygen Separation Performances of Polycarbonate/Metal Salt Membrane (Polycarbonate/Metal Salt 막의 산소분리특성에 미치는 비용매와 금속염 농도의 영향)

  • Seo, Sang-Hun;Lee, Woo-Tai
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.1
    • /
    • pp.61-69
    • /
    • 2001
  • Polycarbonate(PC) membranes for oxygen enrichment from air were prepared by the wet phase inversion method. In order to improve oxygen separation performances of the PC membrane, the effect of the added ethanol(nonsolvent) and $CuCl_2$(metal salt) concentration in the casting solution on morphology, oxygen permeability ami $O_2/N_2$ separation factor of the membrane was studied. In addition, tensile strength and elongation at break of the membrane were investigated. An asymmetric membrane with a dense top layer and a porous sublayer was obtained. The thickness of the dense top layer decreased with increasing amount of nonsolvent additive. Compared with pure PC membrane without additive(metal salt), the oxygen permeability and $O_2/N_2$ separation factor of the $PC/CuCl_2$ membrane are significantly improved. The oxygen permeability and $O_2/N_2$ separation factor is $5.25{\times}10^{-9}cm^3(STP){\cdot}cm/cm^2{\cdot}sec{\cdot}cmHg$ and 4.5, respectively. This improvement might be due to good interaction between metal salt and oxygen.

  • PDF

Ceramic magnetic core material for coupling unit under the condition of high voltage as a part of the PLC (전력선 통신(PLC)을 위한 HV 커플러용 자심재료)

  • 이해연;김현식;오영우
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.365-368
    • /
    • 2000
  • We have studies on the Microstructures and densities as a function of forming pressures and the magnetic properties of the specimens with additive Bi$_2$O$_3$ that sintered at 95$0^{\circ}C$ for 4.5 hours for synthesizing optimal Ni-Cu-Zn ferrite. Green density rose generally as Forming pressure increased from 1.7 ton/cm$^2$to 2.5 ton/cm$^2$and Cold Isostatic Pressure(CIP) method was more effective than Die Pressure(DP) method to high green density. Forming pressure had no influence on apparent density but on the other hand Bi$_2$O$_3$contents were strongly dominant to appaernt density than forming pressure. Bi$_2$O$_3$liquid phases created during sintering process promoted sintering and grain growth so that apparent density, grain size and permeability increased compared to that of the specimens which were sintered with non-additive Bi$_2$O$_3$.

  • PDF

Study on the preparation of BaPbO3 Additive for Improvement of YBCO Superconductor (YBCO 초전도체 특성 향상을 위한 첨가제 $BaPbO_3$ 제작에 관한 연구)

  • Cho, Yong-Joon;Soh, Dea-Wha;Park, Seong-Bum;Fan, Zhanguo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.55-58
    • /
    • 2003
  • [ $YBa_2Cu_3Ox$ ](YBCO) oxide superconductor was prepared by sol-gel method to improve its superconducting properties, and it was made to be a fine powder, which has the same property of solid state reacted powder. $BaPbO_3$ was synthesized with $BaCO_3$, BaO, PbO, and $PbO_2$ and analyzed by XRD. YBCO superconductor was prepared by use of sol-gelled YBCO powder and additive $BaPbO_3$ and its critical temperature and transition temperature were shown as 91.9 K, 3.7 K respectively in case 20 wt.% $BaPbO_3$ was added to pure sol-gelled YBCO powder.

  • PDF

Exploration of Aluminum Alloy using Multi-feeder 3D Additive Manufacturing-based Combinatorial Experiment (Multi-feeder 3차원 적층제조 기반 조합실험을 활용한 알루미늄 합금탐색)

  • Suwon Park;Yongwook Song;Jiyoon Yeo;Songyun Han;Hyunjoo Choi
    • Journal of Powder Materials
    • /
    • v.30 no.3
    • /
    • pp.255-261
    • /
    • 2023
  • Aluminum alloys are widely utilized in diverse industries, such as automobiles, aerospace, and architecture, owing to their high specific strength and resistance to oxidation. However, to meet the increasing demands of the industry, it is necessary to design new aluminum alloys with excellent properties. Thus, a new method is required to efficiently test additively manufactured aluminum alloys with various compositions within a short period during the alloy design process. In this study, a combinatory approach using a direct energy deposition system for metal 3D printing process with a dual feeder was employed. Two types of aluminum alloy powders, namely Al6061 and Al-12Cu, were utilized for the combinatory test conducted through 3D printing. Twelve types of Al-Si-Cu-Mg alloys were manufactured during this combinatory test, and the relationship between their microstructures and properties was investigated.

Development of the Fabrication Technology of High Tc Superconductor for Electrical Energy Storage (전기 에너지 저장을 위한 초전도 나노 합성 기술)

  • Lee, Sang-Heon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.9
    • /
    • pp.442-445
    • /
    • 2006
  • In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBaCuO bulk superconductor with high mechanical strength and critical current density. In this project, the establishment of fabrication condition and additive effects of second elements were examined so as to improve the related properties to the practical use of YBaCuO superconductor, and we reported the production of the YBaCuO high Tc superconductor by the pyrolysis method.

Fabrication Technology of high Tc Superconductor for Electrical Equipment (전력기기 초전도 합성기술)

  • Lee, Sang-Heon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.7
    • /
    • pp.364-366
    • /
    • 2006
  • In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBaCuO bulk superconductor with high mechanical strength and critical current density. In this project, the establishment of fabrication condition and additive effects of second elements were examined so as to improve the related properties to the practical use of YBaCuO superconductor, and we reported the production of the YBaCuO high Tc superconductor by the pyrolysis method.

Fabrication of High Tc Superconductor Using Thermal pyrolysis Method (열분해법 의한 초전도선재 합성)

  • Lee, Sang-Heon;Choi, Young
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1337-1338
    • /
    • 2006
  • BiSrCaCuO was prepared by the thermal pyrolysis method. The solid precursor produced by the dehydration of the gel at $120^{\circ}C$ for 12h is not in the amorphous state as expected but in a crystalline state. X-ray diffraction peaks of nearly the same angular position as the peaks of high Tc phase were observed in the precursor. After pyrolysis at $90^{\circ}C$ and calcination at $840^{\circ}C-920^{\circ}C$ for 4h, the high Tc phase was cleary observed. In this paper, the establishment of fabrication condition and additive effects of second elements were examined so as to improve the related properties to the practical use of BiSrCaCuO superconductor, and we reported the production of the BiSrCaCuO high Tc superconductor by the pyrolysis method.

  • PDF

Cu Filling process of Through-Si-Via(TSV) with Single Additive (단일 첨가액을 이용한 Cu Through-Si-Via(TSV) 충진 공정 연구)

  • Jin, Sang-Hyeon;Lee, Jin-Hyeon;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.128-128
    • /
    • 2016
  • Cu 배선폭 미세화 기술은 반도체 디바이스의 성능 향상을 위한 핵심 기술이다. 현재 배선 기술은 lithography, deposition, planarization등 종합적인 공정 기술의 발전에 따라 10x nm scale까지 감소하였다. 하지만 지속적인 feature size 감소를 위하여 요구되는 높은 공정 기술 및 비용과 배선폭 미세화로 인한 재료의 물리적 한계로 인하여 배선폭 미세화를 통한 성능의 향상에는 한계가 있다. 배선폭 미세화를 통한 2차원적인 집적도 향상과는 별개로 chip들의 3차원 적층을 통하여 반도체 디바이스의 성능 향상이 가능하다. 칩들의 3차원 적층을 위해서는 별도의 3차원 배선 기술이 요구되는데, TSV(through-Si-via)방식은 Si기판을 관통하는 via를 통하여 chip간의 전기신호 교환이 최단거리에서 이루어지는 가장 진보된 형태의 3차원 배선 기술이다. Si 기판에 $50{\mu}m$이상 깊이의 via 및 seed layer를 형성 한 후 습식전해증착법을 이용하여 Cu 배선이 이루어지는데, via 내부 Cu ion 공급 한계로 인하여 일반적인 공정으로는 void와 같은 defect가 형성되어 배선 신뢰성에 문제를 발생시킨다. 이를 해결하기 위해 각종 유기 첨가제가 사용되는데, suppressor를 사용하여 Si 기판 상층부와 via 측면벽의 Cu 증착을 억제하고, accelerator를 사용하여 via 바닥면의 Cu 성장속도를 증가시켜 bottom-up TSV filling을 유도하는 방식이 일반적이다. 이론적으로, Bottom-up TSV filling은 sample 전체에서 Cu 성장을 억제하는 suppressor가 via bottom의 강한 potential로 인하여 국부적 탈착되고 via bottom에서만 Cu가 증착되어 되어 이루어지므로, accelerator가 없이도 void-free TSV filling이 가능하다. Accelerator가 Suppressor를 치환하여 오히려 bottom-up TSV filling을 방해한다는 보고도 있었다. 본 연구에서는 유기 첨가제의 치환으로 인한 TSV filling performance 저하를 방지하고, 유기 첨가제 조성을 단순화하여 용액 관리가 용이하도록 하기 위하여 suppressor만을 이용한 TSV filling 연구를 진행하였다. 먼저, suppressor의 흡착, 탈착 특성을 이해하기 위한 연구가 진행되었고, 이를 바탕으로 suppressor만을 이용한 bottom-up Cu TSV filling이 진행되었다. 최종적으로 $60{\mu}m$ 깊이의 TSV를 1000초 내에 void-free filling하였다.

  • PDF

Evaluation of Microstructure and Electrical Properties in (Na,K)NbO3-Based Pb-free Piezoelectrics Doped with Various Cu2O Concentration ((Na,K)NbO3계 무연 압전체에서 Cu2O 첨가물의 농도 변화에 따른 미세구조 및 전기적 특성 평가)

  • Lee, Youn-Ki;Ryu, Sung-Lim;Kweon, Soon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.870-875
    • /
    • 2011
  • The $(Na_{0.52}K_{0.44})(Nb_{0.9}Sb_{0.06})O_3-0.04dLiTaO_3$ (NKNS-LT) ceramics with various $Cu_2O$ concentration were prepared by the conventional solid state reaction method. The $Cu_2O$ content was varied in the range of 0.1~0.4 wt%. The effects of Cu on microstructure, crystallographic phase transition, and piezoelectric properties were investigated. The material with perovskite structure had a tetragonal phase (T1) when $Cu_2O$ concentration was less than 0.3 wt% and it transformed to another tetragonal phase (T2) when the $Cu_2O$ amount was greater than 0.3 wt%. The phase boundary between T1 and T2 phases appeared at around 0.3 wt% of $Cu_2O$ concentration. The piezoelectric properties were shown the maximum values at the composition of the phase boundary. The electro-mechanical coupling factor ($k_p$) was 0.42 and the piezoelectric charge constant ($d_{33}$) was 245 pC/N at the 0.3 wt% of $Cu_2O$ concentration.