• Title/Summary/Keyword: Cu Ion

Search Result 1,123, Processing Time 0.042 seconds

Nanowire-Like Copper Oxide Grown on Porous Copper, a Promising Anode Material for Lithium-Ion Battery

  • Park, Hyeji;Lee, Sukyung;Jo, Minsang;Park, Sanghyuk;Kwon, Kyungjung;Shobana, M.K.;Choe, Heeman
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.5
    • /
    • pp.438-442
    • /
    • 2017
  • This paper reports the facile synthesis of microlamella-structured porous copper (Cu)-oxide-based electrode and its potential application as an advanced anode material for lithium-ion batteries (LIBs). Nanowire-like Cu oxide, which is created by a simple thermal oxidation process, is radially and uniformly formed on the entire surface of Cu foam that has been fabricated using a combination of water-based slurry freezing and sintering (freeze casting). Compared to the Cu foil with a Cu oxide layer grown under the same processing conditions, the Cu foam anode with 63% porosity exhibits over twice as much capacity as the Cu foil (264.2 vs. 131.1 mAh/g at 0.2 C), confirming its potential for use as an anode electrode for LIBs.

ENHANCED ADHESION STRENGTH OF Cu/polyimide AND Cu/Al/polyimide BY ION BEAM MIXING

  • Chang, G.S.;Kim, T.G.;Chae, K.H.;Whang, C.N.;Zatsepin, D.S.;Kurmaev, E.Z.;Choe, H.S.;Lee, Y.P.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.122-126
    • /
    • 1997
  • the Cu/polyimide system is known to be the best candidate for a multilevel interconnection system due to the low resistance of Cu and to the low dielectric constant of polyimide respectively. Ion beam mixing of Cu(40nm)/polyimide was carried out at room temperature with 80 keV Ar+ and N2+ form $1.5\times$1015 to 15$\times$1015 ions/cm2. The quantitative adhesion strength was measured by a standard scratch test. X-ray photoelectron spectroscopy and x-ray emission spectrocopy are employed to investigate the chemical bonds and the interlayer compound formation of the films Cu/Al/polyimide showed more adhesion strength than Cu/polyimide after ion beam mixing and N2+ ions are more effective in the adhesion enhancement than Ar+ with the same sample geometry. The XES results shows the formation of interlayer compound of CuAl2O4 which can reflect more adhesive Cu/Al/polyimide which has not been reported previously. The latter results is understood by the fact that N2+ ions produce more pyridinelike moiety, amide group and tertiary amine moiety whcih are known as adhesion promotors.

  • PDF

Fundamental characteristics of non-mass separated ion beam deposition with RE sputter-type ion source (고주파 스퍼터타입 이온소스를 이용한 비질량분리형 이온빔증착법에 관한 특성연구)

  • ;Minoru Isshiki
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.136-143
    • /
    • 2003
  • In this paper, high purity RF sputter-type ion source for non-mass separated ion beam deposition was evaluated. The fundamental characteristics of the ion source which is composed of an RF Cu coil and a high purity Cu target (99.9999 %) was studied, and the practical application of Cu thin films for ULSI metallization was discussed. The relationship between the DC target current and the DC target voltage at various RF power and Ar gas pressures was measured, and then preparation conditions for Cu thin films was described. As a result, it was found that the deposition conditions of the target voltage, the target current and the Ar pressure were optimized at -300 V, 240 W and 9 Pa, respectively. The resistivity of Cu films deposited at a bias voltage of -50 V showed a minimum value of 1.8 $\pm$ 0.1 $mu\Omega$cm, which is close to that of Cu bulk (1.67 $mu\Omega$cm).

Effect of Copper Ion on Oxygen Damage in Superoxide Dismutase-Deficient Saccharomyces Cerevisiae

  • Lee, Jeong-Ki;Kim, Ji-Myon;Kim, Su-Won;Nam, Doo-Hyun;Yong, Chul-Soon;Huh, Keun
    • Archives of Pharmacal Research
    • /
    • v.19 no.3
    • /
    • pp.178-182
    • /
    • 1996
  • Using superoxide dismutase (SOD)-deficient mutants of Saccharomyces cerevisiae, the oxidative stresses induced by 0.1 mM of copper ion $(Cu^{++})$ was studied. In aerobic culture condition, yeasts lacking MnSOD (mitochondrial SOD) showed more significant growth retardation than CuZnSOD (cytoplasmic SOD)-deficient yeasts. However, not so big differences in growth pattern of those mutants compared withwild type were observed under anaerobic condition. It was found that, under aerobic condition, the supplementation of 0.1 mM copper ioh:(Cu") into culture medium caused the remarkable increase of CuZnSOD but not so significant change in MnSOD. It was also observed that catalase activities appeared to be relatively high in the presence of copper ion in spite of the remarkable reduction of glutathion peroxidase in CuZnSOD-deficient yeasts, but the slight increments of catalase and glutathion peroxidase were detected in MnSOD-deficient strains. It implies that the lack of cytoplasmic SOD could be compensated mainly by catalase. However, these phenomena resulted in the significantincrease of cellular lipid peroxides content in CuZnSOD-deficient yeasts and the slight increment of lipid peroxides in MNSOD-deficient cells. In anaerobic cultivation supplementing copper ion, the cellular enzyme activities of catalase and glutathion peroxidase in SOD-deficient yeasts were slightly increased without any significant changes of lipid peroxides in cell membrane. It suggests that a little amount of free radicals generated by copper ion under anaerobic condition could be sufficiently overcome by catalase as well as glutathion peroxidase.dase.

  • PDF

Electrical Characteristics of Cu-Ion Conducting Glasses (구리 이온 전도체 유리의 전기적 특성)

  • Lee, J.H.;Lim, K.J.;Park, S.G.;Ryu, B.H.;Kim, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.12-15
    • /
    • 1993
  • The correlation between electrical conduction and dielectric relaxation properties of copper ion conducting glasses is discussed. The glasses were prepared in the system $CuI-Cu_2S-Cu_2O-MoO_3$ using rapid quenching technique. These glasses have high ionic conductivities at room temperature in the range of $10^{\circ}$[S/m], and the conductivities increase with increasing CuI content. The activation energies for conduction are 0.26 - 0.57 eV. The dielectric relaxation times are 1 - 10uS, and the activation energy for ion jumping are 0.18 - 0.41eV. It is shown that the tendency of conduction properties depending on composition of the glass is similar those of dilectric relaxation.

  • PDF

Studies on the Metal-Exchange Reaction of Tetrahedral Cu(II) Complex with Mercuric Ion and Mercury Metal (정사면체 구조를 갖는 Cu(II) 착물과 수은(II) 및 수은(0)과의 금속 교환반응 연구)

  • Young Tae Gong;Sung Nak Choi;Yoon-Bo Shim
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.223-229
    • /
    • 1992
  • Mechanistic studies on the metal-exchange reactions of sparteine copper(II) dichloride [$SpCuCl_2$] with Hg(II) ion and Hg(0) metal have been carried out with the aid of Cyclic Voltammetry and UV-visible spectrophotometry. The metal exchange reaction of $SpCuCl_2$ with both Hg(II) ion and Hg(0) metal follows pseudo-first order kinetics. Rate constants and activation parameters of metal exchange reaction have been evaluated and reported. Experimental results indicate that the rate determining step for the exchange reaction is the cleavage of Cu(II)-N bond in the transient binuclear complex of Cu(II) and mercury(II) bound to sparteine ligand.

  • PDF

A Comparative Study on the NOx Removal Activities of Metal-ion-exchanged Mg/Cu-ZSM-5 Catalysts in the Treatment of Flue Gas from Stationary Sources (금속이온교환된 Mg/Cu-ZSM-5 촉매를 사용한 배연 탈질 공정에서 De-NOx활성 비교연구)

  • 김재천;이병용;정석진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.421-428
    • /
    • 1996
  • In this study, in order to make up its draw-back in Cu-ZSM-5 catalytic system, some of transition metals or alkaline earth metals were cocation-exchanged in Cu-ZSM-5. Among various cocation-ion-exchanged ZSM-5 catalysts, Mg/Cu-ZSM-5 has been found the most active and durable in NOx reduction even at high oxygen content as well as at the presence of water vapor. The role of Mg in ZSM-5 is supposed to prevent the dealumination of aluminum ions in super-cage even at harsh hydro-thermal conditions, and also it seems to stabilize the Cu ions in the structure. In order to prepare commercially available catalysts, Mg/Cu-ZSM-5 catalysts were wash-coated on the surface of honeycomb type monolith, and tested in terms of catalytic activities. As a result, it was found that the catalyst prepared bt the wash-coating showed satisfactorily high NOx conversion for the practical use in SCR process.

  • PDF

Electrochemical Ion Migration Sensitivity of Printed Circuit Board Plated with Sn-3.0Ag-0.5Cu and Sn-37Pb (Sn-3.0Ag-0.5Cu, Sn-37Pb 표면처리 기판의 전기화학적 이온 마이그레이션 민감도)

  • Hong, Won-Sik;Park, No-Chang;O, Cheol-Min;Kim, Gwang-Bae
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.136-138
    • /
    • 2006
  • Recently a lots of problems have observed in high densified and high integrated electronic components. One of them is ion migration phenomena, which induce the electrical short of electrical circuit. Ion migration phenomena has been observed in the field of exposing the specific environment and using for a long time. Also as the RoHS restriction was started in July 1st, 2006, Pb-free solder was utilized in electronics assemblies. In this case, it is very important to compatible between components and printed circuit board(PCB), thus surface treatment materials of PCB was changed to Sn, Sn-3.0Ag-0.5Cu, Cu. Therefore these new application become to need to reevaluate the sensitivity about electrochemical ion migration. This study was evaluated the occurrence time of electrochemical ion migration using by water drop test. We utilized PCB(printed circuit board) having a comb pattern as follows 0.1, 0.318, 0.5, 1.0 mm pattern distance. Sn-3.0Ag-0.5Cu and Sn-37Pb were electroplated on the comb pattern. 6.5V and 15.0V were applied in the comb pattern and then we measured the electrical short time causing by occurring the ion migration. In these results, we evaluate the sensitivity and derived the prediction models of ion migration occurrence time depending on the pattern materials, applied voltage and pattern spacing of PCB conductor.

  • PDF

A Study on the Magnetic Properties of Ion Irradiated Cu/Co Multilayer System

  • Kim, T.Y.;Chang, G.S.;Son, J.H.;Kim, S.H.;Shin, S.W.;Chae, K.H.;Sung, M.C.;Lee, J.;Jeong, K.;Lee, Y.P.;;Whang, C.N
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.163-163
    • /
    • 2000
  • In this research, we used the ion irradiation technique which has an advantae in improving intentionally the properties of surface and interface in a non-equilibrium, instead of the conventional annealing method which has been known to improve the material properties in the equilibrium stat. Cu/Co multilayered films were prepared on SiN4/SiO2/Si substrates by the electron-beam evaporation for the Co layers and the thermal evaporation for the Cu layers in a high vacuum. The ion irradiation with a 80keV Ar+ was carried out at various ion doses in a high vacuum. Hysteresis loops of the films were investigated by magneto-optical polar Kerr spectroscopy at various experimental conditions. The change of atomic structure of the films before and after the ion irradiation was studied by glancing angle x-ray diffraction, and the intermixing between Co and Cu sublayers was confirmed by Rutherford backscattering spectroscopy. The surface roughness and magneto-resistance were measured by atomic force microscopy and with a four-point probe system, respectively. During the magneto-resistance measurement, we changed temperature and the direction of magnetization. From the results of experiments, we found that the change at the interfaces of the Cu/Co multilayered film induced by ion irradiation cause the change of magnetic properties. According to the change in hysteresis loop, the surface inplane component of magnetic easy axis was isotropic before the ion irradiation, but became anisotropic upon irradiation. It was confirmed that this change influences the axial behavior of magneto-resistance. Especially, the magneto-resistance varied in accordance with an external magnetic field and the direction of current, which means that magneto-resistance also shows the uniaxial behavior.

  • PDF

Formation and Growth of Cu Nanocrystallite in Si(100) by ion Implantation

  • Kim, H.K.;Kim, S.H.;Moon, D.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.115-130
    • /
    • 1995
  • In order to produce Cu nanocrystallite in silicon wafer, the implantation technique was used. The samples of silicon (100) wafers were implanted by $Cu^+$ ions at 100 keV and with varying the doses at room temperature. Post-annealing was performed at $800^{\circ}C$ with Ar environment. To investigate the formation of Cu nanocrystallite with ion doses and growth process by thermal annealing, SIMS and HRTEM(high resolution transmission electron microscopy)spectra were studied.

  • PDF