• Title/Summary/Keyword: Cu 치환

Search Result 234, Processing Time 0.037 seconds

The effect of Cu substitution on the electromagnetic wave absorbing properties of Ni-Zn ferrites (Ni-Zn 페라이트의 Cu 치환에 의한 전자파흡수 특성)

  • Lee, Seon-Hag;Oh, Young-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1652-1654
    • /
    • 2000
  • 고상반응법을 이용하여 $Ni_{0.6-x}Cu_{x}Zn_{0.4}Fe_{2}O_4$(x=0, 0.1, 0.2, 0.3) ferrite 분말을 제조하고 1200$^{\circ}C$에서 열처리하여 Cu 첨가에 따른 입자변화와 전자파흡수 특성과의 관계를 조사하였다. Ni를 Cu로 0.1 mol 치환했을 때 까지는 포화자화 및 전자파흡수능이 치환하지 않았을 때와 거의 비슷하였으나, 그 이상 첨 가시는 직선적으로 감소하였다.

  • PDF

A Study on the Influence of Substituting Cu Eine Particle for CuO on NiCuZn Ferrite (CuO 대신 Cu 미분말 치환이 NiCuZn Ferrite에 미치는 영향에 관한 연구)

  • Kim, Jae-Sik;Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.1
    • /
    • pp.15-20
    • /
    • 2003
  • Diffusion speed of Cu metal fine particle is fast better than CuO, so it will promote grain growth in sintering. In this paper, the influence on substituting Cu fine particle for CuO of NiCuZn ferrite with basic composition (N $i_{0.204}$C $u_{0.204}$Z $n_{0.612}$ $O_{1.02}$)F $e_{1.98}$ $O_{2.98}$ has been investigated with varying Cu/CuO ratio. The perfect spinel structure of sintered specimen at 90$0^{\circ}C$ was confirmed by the analysis of XRD patterns. The best condition was obtained when the ratio of Cu/CuO was 60%, and the permeability was 1100 and Ms was 87 emu/g in this condition. Cu has influenced on grain growth in sintering, substituting Cu fine particle for CuO could lower sintering temperature over the 3$0^{\circ}C$. After sintering, substituting Cu performed as good as CuO.s CuO.s CuO.

Substitutions of coloring ions and their effects on wagnerite pigments for cetamic glazes (도자기 유약용 wagnerite의 합성 및 발색원소의 영향)

  • 정용선;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.160-168
    • /
    • 1998
  • In order to investigate the color variation and the solubility limit in wagnerites by metal ion substitution, wagnerite ($A_2XO_4Z$) was synthesized and then, substituted by coloring metal ions, especially $CO^{2+},Ni^{2+}$ and $Cu^{2+}$ ions. When calcium was replaced with Mg, Co, Ni and Cu divalent ions, solid solutions were formed with a limited solubility. Single phase wagnerites were synthesized by the substitution of Ca with Mg and Co, and their colors were white and purple, respectively. Substitutions with $Li^+$ were succeeded in the specific composition and the substitution of vanadium for $X^{5+}$ were attempted, resulting in the wagnerites of dark purple, dark gold and light yellow colors. The substitution of chlorine was, also, attmepted for the fluorine site.

  • PDF

Low Temperature sintering Mg-Zn Ferrites (저손실 Mg-Zn 페라이트의 저온소결화)

  • 권오흥;최완준;최영지;김도환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.382-385
    • /
    • 2003
  • 본 논문에서는 최근 고품위 TV 및 고정세도 디스플레이용으로 화상의 정세도를 향상시키기 위해 수평주파수를 높이려는 움직임이 있어, 편향 요크용 페라이트 코아에는 고주파수 영역에 있어서도 코아로스가 낮은 재료가 요구되고 있는 실정이다. Mg-Zn 페라이트에 있어서 화학조성 및 프로세스가 미세구조에 미치는 영향에 착안하여 저온 소결화를 하였다. 저손실인 Mg-Zn계 Ferrite에 Cu를 첨가하였다. MgO, ZnO, Fe$_2$O$_3$, CuO를 선택한 후 조성비의 변화를 두며 CuO를 MgO로 치환하였다. 이 시료를 98$0^{\circ}C$~135$0^{\circ}C$까지 3시간 소결하였다. 측정은 투자율, 전력손실 수축율, 코아로스를 측정하였다. 시료의 수축율을 개시하는 온도는 90$0^{\circ}C$ 부근이며 Cu치환에 따라 수축율이 증가하였으며, Cu치환에 따라 소성온도가 약 -5$0^{\circ}C$~75$^{\circ}C$ 낮아졌다.

  • PDF

CEMS Study of Ferrite Films M0.2Fe2.8O4 (M =Mn, Ni, Cu) (페라이트 박막 M0.2Fe2.8O4(M=Mn, Ni, Cu)의 Mössbauer 분광학적 연구)

  • Park, Jae Yun;Kim, Kwang Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.2
    • /
    • pp.46-50
    • /
    • 2014
  • The crystallographic properties and cationic distribution of $M_{0.2}Fe_{2.8}O_4$ (M =Mn, Ni, Cu) and $Fe_3O_4$ thin films prepared by sol-gel method have been investigated by X-ray diffraction (XRD) and conversion electron M$\ddot{o}$ssbauer spectroscopy (CEMS). The ionic valence, preferred site, and hyperfine field of Fe ions of the ferrites could be obtained by analyzing the CEMS spectra. The $M_{0.2}Fe_{2.8}O_4$ films were found to maintain cubic spinel structure as in $Fe_3O_4$ with the lattice constant slightly decreased for Ni substitution and increased for Mn and Cu substitution from that of $Fe_3O_4$. Analyses on the CEMS data indicate that $Mn^{2+}$ and $Ni^{2+}$ ions substitute octahedral $Fe^{2+}$ sites mostly, while $Cu^{2+}$ ions substitute both the octahedral and tetrahedral sites. The observed intensity ratio $A_B/A_A$ of the CEMS subspectra of the samples exhibited difference from the theoretical value. It is interpreted as due to the effect of the M substitution for A and B on the Debye temperature of the site. The relative line-broadening of the B-site CEMS subspectra can be explained by the dispersion of magnetic hyperfine fields due to random distribution of M cations in the B sites.

Crystal structure analysis of orthohombic $Sr_{0.6}Ca_{0.4}CuO_2$ compound (사방정계 $Sr_{0.6}Ca_{0.4}CuO_2$ 화합물의 결정구조해석)

  • Park, H.M.;Goetz, D.;Hahn, Th.
    • Korean Journal of Crystallography
    • /
    • v.7 no.1
    • /
    • pp.20-29
    • /
    • 1996
  • Sr0.6Ca0.4CuO2 single crystal has been synthesized by flux method and characterized by the single crystal X-ray diffraction. The compound has the orthorhombic system and the space group is Cmcm(63), lattice parameters are a=3.4645Å, b=16.1417Å, c=3.8727Å. In the (Sr1-xCax)CuO2 compound the limit of Ca from substitution for Sr was determined by the change of bond length. For this, X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray fluorescence (EDAX) and electron probe micro-analysis (EPMA) were used. From the change of Cu-O bond length as the Ca substitution, we concluded the limit of Ca incorporation Xca≒0.73.

  • PDF

Catalytic Combustion of Benzene over Metal Ion-Substituted Y-Type Zeolites (금속이온이 치환된 Y형 제올라이트에서 벤젠의 촉매연소반응)

  • Hong, Seong-Soo
    • Clean Technology
    • /
    • v.22 no.3
    • /
    • pp.161-167
    • /
    • 2016
  • Catalytic combustion of benzene over various metal cation-exchanged zeolites has been investigated. Y(4.8)-type zeolite showed the highest activity among the used zeolites and Cu/Y(4.8) catalyst also showed the highest activity among metal cation/ Y(4.8) zeolites. The catalytic activity increased according to the amount of adsorbed oxygen acquired from O2 TPD results. The catalytic activity also increased with an increase of Cu cation concentration on Cu/Y(4.8) catalysts. The conversion of benzene on the combustion reaction depended on not benzene concentration but the oxygen concentration. In addition, the introduction of water into reactants decreased the catalytic activity.

Effect of Cobalt Substitution on the Magnetic Properties of NiZnCu Ferrite for Multilayer Chip Inductors (Cobalt 치환된 칩인덕터용 NiZnCu Ferrite의 자기적 특성 연구)

  • An, Sung-Yong;Kim, Ic-Seob;Son, Soo-Hwan;Song, So-Yeon;Hahn, Jin-Woo;Choi, Kang-Ryong
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.5
    • /
    • pp.182-186
    • /
    • 2010
  • Effect of cobalt substitution on the sintering behavior and magnetic properties of a NiZnCu ferrite was studied. $Ni_{0.36-x}Co_xZn_{0.44}Cu_{0.22}Fe_{1.98}O_4(0{\leq}x{\leq}0.04)$ ferrite was fabricated by a solid stat reaction method. It was proposed and experimentally verified that $Co^{2+}$ substituted NiZnCu ferrite was effective on improving the quality factor and magnetic properties of NiZnCu ferrites for multilayer chip inductors. The ferrite was sintered without sintering aids, at $880{\sim}920^{\circ}C$, for 2 h and the initial permeability, quality factor, density, shrinkage, saturation magnetization, and coercivity were also measured. The quality factor (Q) was increased linearly up to x = 0.01 and decreased rapidly over x = 0.01. As the cobalt content increased, the initial permeability and density of the ferrites decreases. The initial permeability of toroidal sample for $Ni_{0.35}Co_{0.01}Zn_{0.44}Cu_{0.22}Fe_{1.98}O_4$ ferrites sintered at $900^{\circ}C$ was 130 at 1 MHz and quality factor was 230.

Electromagetic Wave Absorbing Properties of $Ni_{0.5}-Zn_{0.4}-X_{0.1}{\cdot}Fe_2O_4$(X=Cu, Mg, Mn)-Rubber Composite ($Ni_{0.5}-Zn_{0.4}-X_{0.1}{\cdot}Fe_2O_4$(X=Cu, Mg, Mn)-Rubber Composite의 전파흡수특성에 관한 연구)

  • Im, Hui-Dae;Yun, Guk-Tae;Lee, Chan-Gyu
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1234-1239
    • /
    • 1999
  • Electromagnetic wave asorbing properties of the $Ni_{0.5}-Zn_{0.4}-X_{0.1}{\cdot}Fe_2O_4$, where X was replaced by substitution elements Cu, Mg, Mn, have been studied. The structure, shape, size and magnetic properties of the $Ni_{0.5}-Zn_{0.4}-X_{0.1}{\cdot}Fe_2O_4$ were analyzed by XRD, SEM, VSM. The relative complex permittivity, permeability, and electromagnetic wave absorbing properties were measured by Network Analyzer. The structure, shape, size and magnetization value of the $Ni_{0.5}-Zn_{0.4}-X_{0.1}{\cdot}Fe_2O_4$ were found to be similar in spite of substitution elements. The coercive force and hysteresis-loss showed maximum value when Mg was substituted for X. The dielectric loss(${\varepsilon}_r"/{\varepsilon}_r'$) was found to be maximum value when Mn was substituted for X. Also the magnetic loss(${\mu}_r"/{\mu}_r'$} was found to be maximum with Cu substitution. The electromagnetica wave absorbing property of the $Ni_{0.5}-Zn_{0.4}-X_{0.1}{\cdot}Fe_2O_4$-Rubber composite with 4mm thickness was excellent as over - 40dB at 9GHz, and the $Ni_{0.5}-Zn_{0.4}-X_{0.1}{\cdot}Fe_2O_4$-Rubber composite with 8mm thickness was over-40dB at 2GHz. Those composites also showed superior microwave absorbing properties.

  • PDF

A Study on the Influence of the Structural Characteristics of Cu/CeO2 Catalyst on the Low-Temperature Oxidation of Carbon Monoxide (Cu/CeO2 촉매의 구조적 특성이 일산화탄소 저온 산화반응에 미치는 영향 연구)

  • Kim, Min Su;Choi, Gyeong Ryun;Kim, Se Won;Hong, Sung Chang
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.286-292
    • /
    • 2020
  • This study confirmed the effect of the Cu/CeO2-X catalyst on the CO oxidation activity at low temperature through the catalyst's structure and reaction characteristics. The catalyst was prepared by the wet impregnation method. Cu/CeO2_X catalysts were manufactured by loading Cu (active metal) using CeO2 (support) formed at different calcination temperatures (300-600 ℃). Manufactured Cu/CeO2_X catalysts were evaluated for the low-temperature activity of carbon monoxide. The Cu/CeO2_300 catalyst showed an activity of 90% at 125 ℃, but the activity gradually decreased as the calcination temperature of the CeO2-X and Cu/CeO2_600 catalysts showed an activity of 65% at 125 ℃. Raman, XRD, H2-TPR, and XPS analysis confirmed the physicochemical properties of the catalysts. Based on the XPS analysis, the lower the calcination temperature of the CeO2 was, the higher the unstable Ce3+ species (non-stoichiometric species) ratio became. The increased Ce3+ species formed a solid solution bond between Cu and CeO2-X, and it was confirmed by the change of the CeO2 peak in Raman analysis and the reduction peak of the solid solution structure in H2-TPR analysis. According to the result, the formation of the solid solution bond between Cu and Ce has been enhanced by the redox properties of the catalysts and by CO oxidation activity at low temperatures.