• Title/Summary/Keyword: Cu/CuO composite plating

Search Result 2, Processing Time 0.015 seconds

The Study on Coatings to Improve the Radiative Heat Dissipation of Aluminum Alloy (알루미늄 합금의 복사방열향상을 위한 코팅연구)

  • Seo, Mihui;Kim, Donghyun;Lee, Junghoon;Chung, Wonsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.5
    • /
    • pp.208-215
    • /
    • 2013
  • The aim of the present study was to improve the radiative heat dissipation of aluminum alloy, Al 1050. Resin/CuO coating and Cu/CuO composite plating were applied on aluminum alloy to improve the radiative heat dissipation. Resin/CuO coating was made using thermosetting silicon resin and Cu/CuO composite plating was made in pyrophosphate copper plating bath. Radiant heat flux($W/m^2$) was measured by self-produced radiant heat measurement device to compare each specimen. The cross section of specimen and chemical bonding of surface were analyzed by FE-SEM, XPS and FT-IR. As a result, radiant heat of Resin/CuO coating was higher than Cu/CuO composite plating due to the adhesion with aluminum plate and the difference in chemical bonding. But, Both of them were higher than aluminum alloy. In order to confirm the result of experiment, aluminum plate, Resin/CuO coating and Cu/CuO composite plating sample were applied LED and measured the LED temperature. As a result, LED temperature of samples were matched previous results and confirmed coated samples were lower about 10 degrees than the aluminum alloy.

Hydrogen Permeation Performance of Pd, Pd/Cu Membranes Manufactured through Electroless Plating (무전해 도금을 이용해 제작한 Pd, Pd/Cu 분리막의 수소 투과 성능)

  • Jeong In, Lee;Min Chang, Shin;Xuelong, Zhuang;Jae Yeon, Hwang;Chang-Hun, Jeong;Jung Hoon, Park
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.456-464
    • /
    • 2022
  • Hydrogen permeation performance was analyzed by manufacturing Pd and Pd-Cu membranes through electroless plating. As a support for the Pd and Pd-Cu membranes, α-Al2O3 ceramic hollow fiber were used. Pd-Cu membrane was manufactured through sequential electroless plating, and then annealing was performed at 500°C, for 18 h in a hydrogen atmosphere to make Pd and Cu alloy. After annealing, the Pd-Cu membrane confirmed that the alloy was formed through EDS (Energy Dispersive X-ray Spectroscopy) and XRD (X-ray Diffraction) analysis. In addition, the thickness of the Pd and Pd-Cu plating layers were measured to be about 3.21 and 3.72 µm, respectively, through SEM (Scanning Electron Microscope) analysis. Hydrogen permeation performance was tested for hydrogen permeation in the range of 350~450°C and 1~4 bar in hydrogen single gas and mixed gas (H2, N2). In a single hydrogen gas, Pd and Pd-Cu membranes have flux of up to 54.42 and 67.17 ml/cm2⋅ min at 450 °C and 4 bar. In the mixed gas, it was confirmed that the separation factors of 1308 and 453 were obtained under the conditions of 450 °C and 4 bar.