• Title/Summary/Keyword: Cu(II)-EDTA

Search Result 42, Processing Time 0.025 seconds

The effect of dissolved oxygen and initial complextation of Cu(II) and EDTA on photooxidation of Cu(II)-EDTA by TiO2 (TiO2 광측매를 이용한 Cu(II)-EDTA의 산화에서 용존산소와 Cu(II)와 EDTA 초기 당량의 영향)

  • 정흥호;성기웅;조영현;이영석;최상원
    • Journal of Environmental Science International
    • /
    • v.11 no.1
    • /
    • pp.85-91
    • /
    • 2002
  • The effects of initial concentration of dissolved oxygen content, Cu(II) and EDTA in an aqueous Cu(II)-EDTA solution on $TiO_2$ photo-oxidation of EDTA were investigated using $TiO_2$ (Degussa P-25) and UV irradiation at $20{\circ}C$. In the presence of dissolved oxygen and/or Cu(II) the photo-oxidation rates of EDTA were enhanced. The rates linearly increased in the range of initial Cu(II) concentration below 1.79 mM, while abode this concentration those were kept constant. The trend or the EDTA photo-oxidation rates appeared to be akin to the Langmuir-Hinshelwood equation farm and the k values calculated were 0.05 mM/min for the free-EDTA system, and 0.17 mM/min far the Cu(II)-EDTA system. These meant the aqueous EDTA decomposition was enhanced due to weakening of the intra-molecular bond strength of EDTA by complexation with Cu(II) added. It was concluded the decomposition of aqueous EDTA by $TiO_2$ photo-oxidation was maximum in the presence of dissolved oxygen supplied by air purging and of Cu(II) with its concentration for 1:1 Cu(II)-EDTA complexation ratio.

Treatment of Cu-EDTA by using Photocatalytic Oxidation Process - Comparison between UV Lamp and Solar Light - (광산화 공정을 이용한 Cu-EDTA 처리 - 인공 자외선램프와 태양광의 처리경향 비교 -)

  • Shin, In-Soo;Choi, Bong-Jong;Lee, Seung-Mok;Yang, Jae-Kyu
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.66-72
    • /
    • 2005
  • Effect of the pH, molar ratio of Cu(II)/EDTA, concentration of Cu(II)-EDTA and ionic strength on the photocatalytic oxidation(PCO) of Cu(II)-EDTA in solar light was studied in this work. Experimental results in this work were compared with previous results obtained with UV-lamp. In the kinetics, Cu(II)-EDTA decomposition was favorable below neutral pH. The removal of Cu(II) and DOC was favorable as $TiO_2$ dosage increased. The initial rate for the decomplexation of Cu(II)-EDTA linearly increased as the concentration of Cu(II)-EDTA increased. The removal of Cu(II) and DOC was not much affected by variation of ionic strength with $NaClO_4$ as a background ion while much reduction was observed in the presence of background ions having higher formal charges. The removal trend of Cu(II) and DOC with variation of ionic strength and concentration of Cu(II)-EDTA in solar light was similar with that in UV light. Variation of the molar ratio of Cu(II)/EDTA showed a negligible effect on the removal of both Cu(II) and DOC. However, removal of both Cu(II) and DOC was two-times greater than that previous results obtained with UV light.

TiO2 Reuse and Recovery from the Photocatalytic Oxidation of Cu(II)-EDTA using TiO2/UV-A System (TiO2/UV-A 시스템을 이용한 Cu(II)-EDTA의 광촉매 산화반응에서 TiO2 재사용 및 회수)

  • Lee, Seung-Mok
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.84-91
    • /
    • 2005
  • $TiO_2-catalyst$ suspensions work efficiently in Photocatalytic oxidation (PCO) for wastewater treatment. Nevertheless, once photocatalysis is completed, separation of the catalyst from solution becomes the main problem. The PCO of Cu(II)-EDTA was studied to determine the reusability of the titanium dioxide catalyst. Aqueous solutions of $10^{-4}M$ Cu(II)-EDTA were treated using illuminated $TiO_2$ particles at pH 6 in a circulating reactor. $TiO_2$ was reused in PCO system for treatment of Cu(II)-EDTA comparing two procedures: reuse of water and $TiO_2$ and reuse of the entire suspension after PCO of Cu(II)-EDTA. The results are as follows; (i) Photocatalytic efficiency worsens with successive runs when catalyst and water are reused without separation and filtration, whereas, when $TiO_2$ is separated from water, the reused $TiO_2$ is not deactivated. (ii) The $TiO_2$ mean recovery (%) with reused $TiO_2$ was 86.4%(1.73g/L). Although the mean initial degradation rate of Cu(II)-EDTA and Cu(II) was lower than that using fresh $TiO_2$, there was no significant change in the rate during the course of the three-trial experiment. It is suggested that Cu(II)-EDTA could be effectively treated using an recycling procedure of PCO and catalyst recovery. (iii) However, without $TiO_2$ separation, the loss of efficiency of the PCO in the use of water and $TiO_2$ due to Cu(II), DOC remained from previous degradation and Cu(II)-EDTA added to the same suspension was observed after 2 trials, and resulted in the inhibition of the Cu(II)-EDTA, Cu(II) and DOC destruction.

Application of Ferrate(VI) on the Decomplexation of Cu(II)-EDTA

  • Tiwari, Diwakar;Yang, Jae-Kyu;Chang, Yoon-Young;Lee, Seung-Mok
    • Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.131-135
    • /
    • 2008
  • In this study, Fe(VI) was employed as a multi-functional agent to treat the simulated industrial wastewater contaminated with Cu(II)-EDTA through oxidation of EDTA, decomplexation of Cu(II)-EDTA and subsequent removal of free copper through precipitation. The decomplexation of $10^{-4}\;M$ Cu(II)-EDTA species was performed as a function of pH at excess concentration of Fe(VI). It was noted that the acidic conditions favor the decomplexation of Cu(II)-EDTA as the decomplxation was almost 100% up to pH 6.5, while it was only 35% at pH 9.9. The enhanced degradation of Cu(II)-EDTA with decreasing the pH could be explained by the different speciation of Fe(VI). $HFeO_4^-$ and $H_2FeO_4$, which are relatively more reactive than the unprotonated species $FeO_4^{2-}$, are predominant species below neutral pH. It was noted that the decomplexation reaction is extremely fast and within 5 to10 min of contact, 100% of Cu(II)-EDTA was decomplexed at pH 4.0. However, at higher pH (i.e., pH 10.0) the decomplexation process was relatively slow and it was observed that even after 180 min of contact, maximum ca 37% of Cu(II)-EDTA was decomplexed. In order to discuss the kinetics of the decomplexation of Cu(II)-EDTA, the data was slightly fitted better for the second order rate reaction than the first order rate reaction in the excess of Fe(VI) concentration. On the other hand, the removal efficiency of free Cu(II) ions was also obtained at pH 4.0 and 10.0. It was probably removed through adsorption/coagulation with the reduced iron i.e., Fe(III). The removal of total Cu(II) was rapid at pH 4.0 whereas, it was slow at pH 10.0. Although the decomplexation was 100% at lower pH, the removal of free Cu(II) was relatively slow. This result may be explicable due to the reason that at lower pH values the adsorption/coagulation capacity of Fe(III) is greatly retarded. On the other hand, at higher pH values the decomplexation of Cu(II)-EDTA was partial, hence, slower Cu(II) removal was occurred.

Treatment of Wastewater Containing Cu(II)-EDTA Using Ferrate in Sequencing Batch Scale System (연속회분식 반응 장치에서 Ferrate를 이용한 Cu(II)-EDTA 함유 폐수 처리 연구)

  • Kim, Hyoung-Uk;Kim, Byeong-Kwon;Lee, Seung-Mok;Yang, Jae-Kyu;Kim, Hyun-Ook;Kwan, Jung-An;Im, Hang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.7
    • /
    • pp.729-734
    • /
    • 2008
  • The higher valence state of iron i.e., Fe(VI) was employed for the treatment of Cu(II)-EDTA in the aqueous/waste waters. The ferrate(VI) was prepared through wet oxidation of Fe(III) by sodium hypochlorite. The purity of prepared Fe(VI) was above 93%. The stability of Fe(VI) solution decreased as solution pH decreased through self decomposition. The reduction of Fe(VI) was obtained by using the UV-Visible measurements. The dissociation of Cu(II)-EDTA complex through oxidation of EDTA using Fe(VI) and subsequent treatment of organic matter and metal ions by Fe(III) reduced from Fe(VI) in bench-scale of continuous flow reactor were studied. The removal efficiencies of copper were 69% and 79% in pH control basin and reactor, respectively, at 120 minutes as retention time. In addition, Cu(II)-EDTA in the reactor was decomplexated more than 80% after 120 minutes as retention time. From this work, a continuous treatment process for the wastewater containing metal and EDTA by employing Fe(VI) as muluti-functional agent was developed.

Spectrofluorimetric determination of EDTA with Cu(II)-tiron chelate (Cu(II)-tiron 킬레이트를 이용한 EDTA 분광형광법 정량)

  • Choi, Hee-Seon
    • Analytical Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.231-235
    • /
    • 2011
  • A spectrofluorimetric method for the determination of EDTA in real samples such as mayonnaise, powder detergent and cleansing cream with tiron (4,5-dihydroxy-1,3-benzenedisulfonic acid) as a fluorimetric reporter was developed. When tiron is chelated with Cu(II), the fluorescent intensity is decreased by a quenching effect. However, when Cu(II)-tiron chelate reacts with EDTA, fluorescent intensity is increased as tiron is released. Several experimental conditions such as pH of the sample solution, the amount of Cu(II), the amount of tiron, heating temperature and heating time were optimized. Fe(III) interfered more seriously than any other ions, interference of Fe(III) could be disregarded, because Fe(III) was scarcely contained in selected real samples. The linear range of EDTA was from $8.0{\times}106{-8}\;M$ to $2.0{\times}10^{-6}\;M$. With this proposed method, the detection limit of Fe(III) was $5.2{\times}10^{-8}\;M$. Recovery yields of 92.7~99.3% were obtained. Based on experimental results, it is proposed that this technique can be applied to the practical determination of EDTA.

The Cation Exchange Separation of Metal-Trien Mixed Complexes (금속-Trien 혼합착물의 양이온 교환수지상에서의 분리)

  • Yung-Kyu Park;Chul- Heui Lee;Mu-Kang Lee
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.2
    • /
    • pp.129-138
    • /
    • 1980
  • The formation constants of the mixed-ligand complexes in the Cd(II), Cu(II) and Pb(II)-Trien-OH system were studied by polarograph. The formation constant $(log{\beta}_{ij})$ was determined at $25^{\circ}C$ in the ionic strength of 0.1. It was also confirmed that the mixed ligand complexes in this system were formed above pH 10.2, 10.5 and 9.0 for Cu(II), Cd(II) and Pb(II) by the calculation of the distribution for complexes at the various pH. Masking of Cd(II) by conversion to anionic EDTA-complexes has been used to separate Cu(II) from Cd(II) through passage of a combined Trien-EDTA solution on an cationic resin column. The optimal condition for the separation of Cu(II) from Cd(II) is confirmed at the pH range above 9.0, not only by considering the theoretical equation of the conditional-exchange-constant of metal on the cation exchange resin,but also by calculating the distribution of the mixed ligand complexes in the resin at the various pH with computer. By analyzing the synthetic sample of Cu(II) and Cd(II) with a EDTA masking at pH 9.5, it is found that the results of the experiment are satisfied with the theoretical value.

  • PDF

Oxidation of Cu(II)-EDTA by TiO2 Photo-Catalysis(I) - The Effects of TiO2 Loading & Initial pH of Solution - (TiO2 광-촉매 반응에 의한 Cu(II)-EDTA의 산화(I) - TiO2 량과 pH의 영향 -)

  • Chung, Hung-Ho;Park, Eun-Hee;Rho, Jae-Seong;Sung, Ki-Woung;Cho, Young-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.154-159
    • /
    • 1999
  • EDTA (ethylenediaminetetraacetic acid), a chelating agent is most widely used in industrial applications, especially for cleaning of metals in water, frequently prohibits metal removal from water in conventional water treatment technologies. It could be easier to remove aqueous metal ions by the breakdown of DETA complexed bonds first. This study investigated the availability of $TiO_2$ photo-catalysis for the aqueous phase oxidation of Cu(II)-EDTA, under an aerobic condition at $20^{\circ}C$ with $TiO_2$ (Degussa P-25) and 1.79mM of Cu(II)-EDTA. When $TiO_2$ loading was 2.0 g/L, the photo-catalytic oxidation of Cu(II)-EDTA was maximal. The tendency of EDTA adsorption onto the catalyst surface was affected by $TiO_2$ surface charge, and the oxidation rate of Cu(II)-EDTA by photo-catalysis was shown to be dependent upon the tendency of EDTA adsorption before photo-irradiation.

  • PDF

Recovery of Copper, Reuse of $TiO_2$, and Assessment of Acute Toxicity in the Photocatalytic Oxidation of Cu(II)-EDTA (Cu(II)-EDTA 광촉매 산화반응에서의 구리회수, $TiO_2$ 재사용 및 처리수 독성평가)

  • Yang, Jae-Kyu;Choi, Bong-Jong;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.844-851
    • /
    • 2005
  • The purpose of this study was to determine feasibility of application of regenerated or recycled $TiO_2$ on the successive treatment of Cu(II)-EDTA. The recovery of copper, the reuse of $TiO_2$ and the assessment of acute toxicity was studied in the total eight successive photocatalytic reactions. Aqueous solution of $10^{-4}\;M$ Cu(II)-EDTA was treated using an illuminated $TiO_2$ at pH 6 in a circulating reactor. Two different procedures were applied in the reuse of $TiO_2$: i) recycle of $TiO_2$ without acid wash ii) regeneration of $TiO_2$ with acid wash to remove adsorbed copper in a previous experiment. The averaged decomplexation rate constant($k'_{obs}$) of Cu(II)-EDTA in recycle of $TiO_2$ without acid wash was approximately 45% less than that in regeneration of $TiO_2$ with acid wash. Removal of Cu(II) was near complete after 180 minutes in the total eight successive photocatalytic reactions using the regenerated $TiO_2$ after acid wash. In contrast, removal of Cu(II) was minimum at total fifth successive photocatalytic oxidation using the recycled $TiO_2$ without arid wash. The recovered $TiO_2$ was approximately 86% in average in each procedure. The recovered Cu(II) was 67.9% in average. The acute relative toxicity of the treated water rapidly declined at an initial reaction time up to 60 minutes but little declination was observed after 60 minutes due to little degradation of DOC. Relative toxicity of treated water using the recycled $TiO_2$ without acid wash we some what well correlated with the concentration of dissolved Cu(II). From this work, it is suggested that Cu(II)-EDTA can be effectively treated using an integrated cyclic photocatalytic oxidation with recovery of $TiO_2$ and Cu(II).

Treatment of Cu(II)-EDTA using Solar/$TiO_2$ Photocatalysis (태양광/$TiO_2$ 광산화를 이용한 Cu(II)-EDTA의 제거)

  • Shin, In-Soo;Lee, Seung-Mok;Yang, Jae-Kyu;Shin, Won-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.163-169
    • /
    • 2005
  • Photocatalytic oxidation of Cu(II)-EDTA has been studied using solar/$TiO_2$ photocatalysis as an energy source. Photocatalysis efficiency on the treatment of Cu(II)-EDTA was investigated using different types of solar collectors as well as by variation of the angles of solar collector solar light intensities, flow rates, and areas of solar collector. effect of $H_2O_2$ and types of $TiO_2$ catalyst on the treatment of Cu(II)-EDTA was also investigated. Removal of Cu(II) and DOC was favorable with a hemispherical collector than with a flat collector Removal of Cu(II) and DOC increased with increasing angles of solar collector up to $38^{\circ}$. Slurry type $TiO_2$ showed four-times higher removal efficiency than immobilized type $TiO_2$. Removal of both Cu(II) and DOC at a clear sky of solar light intensity ranging from 0.372 to $2.265\;mW/cm^2$ was greater than removal at a cloudy day of solar light intensity ranging from 0.038 to $1.129\;mW/cm^2$. From the result of this research that the removal efficiency of Cu(II) and DOC increased as the solar light intensity increased, it can be inferred that quantum yield in the destruction of Cu(II)-EDTA may directly related with the solar light intensity. Removal of Cu(II) increased as increasing the area of solar collector and was similar at lower flow rates white removal of Cu(II) was interfered at higher flow rates. When immobilized $TiO_2$ was used, removal efficiency of Cu(II) increased in the presence of $H_2O_2$ while negligible effect was found in the use of $TiO_2$ slurry.