• Title/Summary/Keyword: Cs Sr

Search Result 244, Processing Time 0.025 seconds

High-temperature Thermal Decomposition of Cs-adsorbed CHA-Cs and CHA-PCFC-Cs Zeolite System, and Sr-adsorbed 4A-Sr and BaA-Sr Zeolite System (Cs-흡착 CHA-Cs 및 CHA-PCFC-Cs 제올라이트계와 Sr-흡착 4A-Sr 및 BaA-Sr 제올라이트계의 고온 열분해)

  • Lee, Eil-Hee;Kim, Ji-Min;Kim, Hyung-Ju;Kim, Ik-Soo;Chung, Dong-Yong;Kim, Kwang-Wook;Lee, Keun-Young;Seo, Bum-Kyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.49-58
    • /
    • 2018
  • For the immobilization of high-radioactive nuclides such as Cs and Sr by high-temperature thermal decomposition, this study was carried out to investigate the phase transformation with calcined temperature by using TGA (thermogravimetric analysis) and XRD (X-ray diffraction) in the Cs-adsorbed CHA (chabazite zeolite of K type)-Cs and CHA-PCFC (potassium cobalt ferrocyanide)-Cs zeolite system, and Sr-adsorbed 4A-Sr and BaA-Sr zeolite system, respectively. In the case of CHA-Cs zeolite system, the structure of CHA-Cs remained at up to $900^{\circ}C$ and recrystallized to pollucite ($CsAlSi_2O_6$) at $1,100^{\circ}C$ after undergoing amorphous phase at $1,000^{\circ}C$. However, the CHA-CFC-Cs zeolite system retained the CHA-PCFC-Cs structure up to $700^{\circ}C$, but its structure collapsed in $900{\sim}1,000^{\circ}C$, and then transformed to amorphous phase, and recrystallized to pollucite at $1,100^{\circ}C$. In the case of 4A-Sr zeolite system, on the other hand, the structure of 4A-Sr maintained up to $700^{\circ}C$ and its phase transformed to amorphous at $800^{\circ}C$, and recrystallized to Sr-feldspar ($SrAl_2Si_2O_8$, hexagonal) at $900^{\circ}C$ and to $SrAl_2Si_2O_8$ (triclinic) at $1,100^{\circ}C$. However, the BaA-Sr zeolite system structure began to break down at below $500^{\circ}C$, and then transformed to amorphous phase in $500{\sim}900^{\circ}C$ and recrystallized to Ba/Sr-feldspar (coexistence of $Ba_{0.9}Sr_{0.1}Al_2Si_2O_8$ and $Ba_{0.5}Sr_{0.5}Al_2Si_2O_8$) at $1,100^{\circ}C$. All of the above zeolite systems recrystallized to mineral phase through the dehydration/(decomposition) ${\rightarrow}$ amorphous ${\rightarrow}$ recrystallization with increasing temperature. Although further study of the volatility and leachability of Cs and Sr in the high-temperature thermal decomposition process is required, Cs and Sr adsorbed in each zeolite system are mineralized as pollucite, Sr-feldspar and Ba/Sr-feldspar. Therefore, Cs and Sr seen to be able to completely immobilize in the calcining wasteform/(solidified wasteform).

A Study on Distribution of Cs-137 and Sr-90 in Soils around Taejon Region (대전지역 토양에 대한 Cs-137 및 Sr-90 방사능농도 분포 조사)

  • Lee, Myung-Ho;Lee, Chang-Woo;Hong, Kwang-Hee;Choi, Yong-Ho;Kim, Sang-Bok;Park, Doo-Won;Lee, Jeong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.2
    • /
    • pp.123-128
    • /
    • 1995
  • The concentration of Cs-137 and Sr-90 has been analyzed in soils around Taejon region. A correalation was found between the concentration of Cs-137 and the organic matter content. The mean value of Cs-137 was 14.37Bq/kg-dry and that of Sr-90 was 7.95Bq/kg-dry in undisturbed soils around Taejon region. The concentration ratio of Cs-137/Sr-90 was 1.99. The distribution of Cs-137 and Sr-90 was similar to cumulative fallout level and had been more affected by nuclear weapons test than by the chernobyl accident.

  • PDF

$^{137}Cs$ and $^{90}Sr$ Sorption of Kaolinite (배올리나이트의 $^{137}Cs$$^{90}Sr$ 흡착특성)

  • 정찬호;조영환;박상원;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.91-96
    • /
    • 1994
  • 중.저준위 방사성 폐기물의 대표적인 핵종인 137Cs, 90Sr에 대한 캐올리나이트의 흡착특성을 수용액의 이온강도와 pH의 영양하에서 알아보았다. 흡착실험은 회분식으로 하였고, 사용한 수용액은 NaCl, CaCl2, MgSO4, KCL 각각을 10-1, 10-2, 10-3, 10-4 mole/$\ell$로 하였다. 수용액광물 평형상태의 pH를 4.5, 7.0, 10.5로 조절하였다. 실험결과 캐올리나이트의 Cs, Sr 흡착은 이온강도와 pH에 상당한 영향을 받으며, Sr 흡차에 양이온들의 경쟁은 Ca2+ Mg2+>K+>Na+ 순을 보이고, Cs의 경우에는 K+>Ca2+ Mg2+>Na+의 순을 보인다. 이는 수용액상에서 이온들의 수호에너지와 관련되며, 광물입자와 이온들의 물구조변환특성에 의해 설명된다. Cs과 Sr 사이에 흡착우선성은 산성 내지 약알카리에서는 Cs이 Sr보다 흡착이 잘 되나, 강알칼리성 환경에서는 Sr이 Cs보다 흡착이 잘 되는 pH 의존성을 보였다. 수용액의 pH가 증가함에 따라 핵종의 흡착량이 증가하는데, 이는 캐올리나이트의 흡착자리인 실라놀과 알루미놀에 의한 제타전위가 pH에 의존함과 잘 일치한다.

  • PDF

Ion Exchange Phenomena of $Cs^{+1},\;Sr^{+2},\;and\;Th^{+4}$ on Ion Exchange Resin in Loading and Elution Process ($Cs^{+1},\;Sr^{+2}$$Th^{+4}$가 동시에 이온교환수지에 흡착 및 탈착시의 이온교환현상)

  • Park, Chong-M.;Walter, Meyer
    • Journal of Radiation Protection and Research
    • /
    • v.11 no.2
    • /
    • pp.104-113
    • /
    • 1986
  • The ion exchange behaviour of the $Cs^{+1},\;Sr^{+2},\;and\;Th^{+4}$ in the system of $Cs^{+1},\;Sr^{+2},\;Th^{+4},\;and\;7Cl^{-}-H^{+}$ from Dowex HCR-W2, was examined in the loading and elution processes. $Th^{+4}$ was slowly adsorbed through the entire contact time between resin and solution and $Cs^{+1}\;and\;Sr^{2+}$ were adsorbed fast for the first few minutes of contact time. Because of the strong affinity of $Th^{+4}$, the longer contact time was allowed, the less amount of $Cs^{+1}\;and\;Sr^{2+}$ was adsorbed on the resin. The peak concentration of the resin phase $Cs^{+1}$ in the solution concentration of $Cs^{+1}:Sr^{+2}:Th^{+4}$ in the ratio of 2 : 2 : 1 in normality with total normality of 0.1N was produced at about 4 minutes of contact time and the peak time for $Sr^{+2}$ was 20 minutes. The loaded ions were eluted using hydrochloric acid. The loaded $Cs^{+1}$ was eluted at the low eluent concentration of less than 0.1N with less than 5% contamination of $Sr^{+2}$. The loaded $Th^{+4}$ was eluted at the high eluent concentration of greater than 1N. The best eluent concentration for eluting $Th^{+4}$ was 4N.

  • PDF

제올라이트 AW500,13X 이용 Cs 고 Sr의 분리특성과 가열변화

  • 이일희;김광욱;변기호;권선길;유재형
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.385-390
    • /
    • 1996
  • Cs는 AW500 에서 높은 분배계수 값(K$_{Cs}$>$10^3$$m\ell$/g)을 얻었으며 , Sr은 13X, 평형 용액의 pH=10의 조건에서 최대의 분배계수값(K$_{Sr}$~$10^4$$m\ell$/g)을 보였고, 평형용액의 pH 증가에 따라서 급격히 증가하는 경향을 보였다. 또한 AW500-Cs와 13X-Sr계는 고액비, 즉 V/m=40, 및 초기용액의 pH가 3 이상에서 최대의 분배계수 값을 얻었으며, 혼합제올라이트의 비(AW500/13X)가 1.5인 조건에서 Cs과 Sr을 효과적으로 동시에 분리할 수 있음 보았다. 그리고 1,10$0^{\circ}C$에서 배소한 AW500-Cs는 CsAlSi$_2$O$_{6}$로 재결정되며 , 13X-Sr은 SrAI$_2$Si$_2$O$_{8}$ 및 SiO$_2$상(phase)으로 재결정한다.

  • PDF

Predictions of $^{90}Sr$ and $^{137}Cs$ Concentrations in Rice Seeds and Chinese Cabbage after a Nuclear Accident (원자력 사고후 쌀알과 배추내 $^{90}Sr$$^{137}Cs$ 농도 예측)

  • Choi, Yong-Ho;Lim, Kwang-Muk;Hwang, Won-Tae;Lee, Han-Soo;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.3
    • /
    • pp.127-146
    • /
    • 2002
  • A method of more realistically, predicting radionuclide concentrations in crop plants varying with time after a nuclear accident was established to estimate 50 years' concentrations of $^{90}Sr$ and $^{137}Cs$ in polished rice seeds and Chinese cabbage for unit dry deposition. After non-growing season accidents, concentrations of both nuclides decreased gradually with time and $^{90}Sr$ concentrations were higher than those of $^{137}Cs$ throughout the whole period. Radionuclide concentrations in the 1 st year after growing season accidents were on the whole higher than those after non-growing season accidents by factors of up to 30 for $^{90}Sr$ and up to 1,000 for $^{137}Cs$. In polished rice seeds, the 50 years-integrated concentration was higher for $^{90}Sr$ than for $^{137}Cs$ after non-growing season accidents, whereas the opposite was true after growing season accidents. In Chinese cabbage. however, it was higher for $^{90}Sr$ than for $^{137}Cs$ after both types of the accident. Generally speaking, the dominant pathway for the integrated concentration after the growing season accident was root uptake for $^{90}Sr$ and direct plant contamination for $^{137}Cs$. The effect of resuspension was negligible. Based on the predicted results. the direct]on of planning countermeasures was suggested for various accident conditions.

Distributions of 137Cs and 90Sr in the Soil of Uljin, South Korea (울진토양에서의 137Cs 및 90Sr 분포)

  • Song, JiYeon;Kim, Wan;Maeng, Seongjin;Lee, Sang Hoon
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.1
    • /
    • pp.49-55
    • /
    • 2016
  • Background: For the purpose of baseline data collection and enhancement of environmental monitoring the distribution studies of $^{137}Cs$ and $^{90}Sr$ in the soil of Uljin province was performed and the relation between surface soil activities and soil properties (pH, TOC and median of the surface soil) was analyzed. Materials and Methods: For 14 spots within 10 km from the NPP surface soil samples were collected and soils for depth profile were sampled for 3 spots in April 2011. Using ${\gamma}$-ray spectrometry with HPGe detector, the concentrations of $^{137}Cs$ were determined and the concentrations of $^{90}Sr$ were measured by counting ${\beta}$-activity of $^{90}Y$ (in equilibrium with $^{90}Sr$) in a gas flow proportional counter. Results and Discussion: The concentration ranges of $^{137}Cs$ and $^{90}Sr$ were $<0.479-39.6Bq{\cdot}(kg-dry)^{-1}$ (avg. $7.51Bq{\cdot}(kg-dry)^{-1}$) and $0.209-1.85Bq{\cdot}(kg-dry)^{-1}$ (avg. $0.74Bq{\cdot}(kg-dry)^{-1}$) which were similar to the reported values from other regions in Korea. The activity ratio of $^{137}Cs$ to $^{90}Sr$ in surface soils was around 9.67, which is much bigger than the initial value of 1.75 for worldwide fallouts because of faster downward movement of $^{90}Sr$ after fallout than that of $^{137}Cs$. For depth profile studies soils were collected down to 40 cm depth for the locations of Deokgu, Hujeong and Maehwa. The $^{137}Cs$ concentration distribution of the first two showed maximum values at top soils and decreased rapidly in exponential manner, while $^{90}Sr$ showed two local maximum values for soils near top and about 30 cm depth. Through linear fittings between the $^{137}Cs$ and $^{90}Sr$ concentrations of surface soil and pH, TOC and median of the surface soil, the only probable relationship obtained was between $^{137}Cs$ and TOC (determination coefficient $R^2=0.6$). Conclusion: The concentration ranges of $^{137}Cs$ and $^{90}Sr$ in Uljin were similar to the reported values from other regions in Korea. The only probable relationship obtained between activities and soil properties was between $^{137}Cs$ and TOC.

Removal of Cs and Sr in Water Using Chemical and Natural Coagulants (화학 및 천연 응집제를 이용한 수중 Cs, Sr 제거)

  • Kim, Seongbeom;Kim, Youngsug;Kang, Sungwon;Oh, Daemin;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.12
    • /
    • pp.662-666
    • /
    • 2016
  • This study investigated removal of radionuclides (Cs, Sr) in surface water by coagulation and precipitation. Jar tests were conducted with various chemical and natural coagulants to remove the stabilized radionuclides ($^{133}Cs$, $^{88}Sr$). Chemical coagulants included aluminum sulfate, poly aluminum chloride, and poly aluminum hydroxide chloride silicate (PACS); natural coagulants (minerals) included illite and zeolite. Chemical coagulant alone could achieve removals of Cs and Sr less than 10%; The removals increased up to 23.1% for Cs and 17.8% for Sr with addition of poly-dimethyldiallylammonium chloride (polyDADMAC) along with the chemical coagulants. Compared with chemical coagulants, natural coagulants (minerals) could achieve higher removals of Cs and Sr. Addition of zeolite along with PACS and polyDADMAC increased the removal rates up to 36.9% for Cs and 17.1% for Sr.

Adsorption Characteristics of Sr ion and Cs ion by a Novel PS-zeolite Adsorbent Immobilized Zeolite with Polysulfone (Polysulfone으로 제올라이트를 고정화한 새로운 PS-zeolite 비드에 의한 Sr 이온 및 Cs 이온의 흡착 특성)

  • Lee, Chang-Han;Park, Jeong-Min;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.24 no.5
    • /
    • pp.671-678
    • /
    • 2015
  • The adsorption characteristics of Sr and Cs ions were investigated by using PS-zeolite beads prepared by immobilizing zeolite with polysulfone (PS). The adsorption kinetics of Sr and Cs ions by PS-zeolite beads was described well by the pseudo-second-order model. The maximum adsorption capacities of Sr and Cs ions calculated from Langmuir isotherm model were 65.0 mg/g and 76.4 mg/g, respectively. In the binary system of Sr ion and Cs ion, the adsorption capacities of each ion decreased with increasing mole ratio of mixed counterpart ion, and Cs ion showed the higher hinderance than Sr ion. We found that thermodynamic properties of Sr and Cs ions on absorption reaction were spontaneous and endothermic at 293 to 323 K.

Separation Behavior of Cs and Sr on the Various Zeolites (각종 제올라이트계에서의 Cs 및 Sr 분리특성)

  • Lee, Eil-Hee;Lee, Won-Kyung;Yoo, Jae-Hyung;Park, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.4 no.4
    • /
    • pp.731-738
    • /
    • 1993
  • This study showed the adsorption behavior of Cs and Sr into the inorganic ion-exchanger zeolites such as 4A, 13X, AW300, AW500 and natural. It was found that the best type of zeolite is AW500 for Cs and 13X for Sr in terms of ion-exchange capacity. The temperature effect was also examined for the following systems : AW500-Cs, AW300-Cs, natural zeolite-Cs, 4A-Sr and 13X-Sr. Experiments showed that the effect of temperature on the ion-exchange capacity is negligible in all cases except for the systems of 4A-Sr and natural zeolite-Cs. The enhancement in the ion-exchange capacity for 4A-Sr would be caused by the Sr ion movement and the multilayer adsorption due to the heterogeneous characteristics of ion-exchange site. The distribution coefficient was increased with pH of the solution which is in equilibrium with zeolite particles. The values of $K_d$ in the systems of AW500-Cs and 4A-Sr were found to be about $10^3cm^3/g$ and $10^3{\sim}10^4cm^3/g$ respectively.

  • PDF