• Title/Summary/Keyword: Crystallite morphology

Search Result 65, Processing Time 0.029 seconds

Low temperature synthesis of ZnO nanopowders by the polymerized complex method (착체중합법을 이용한 ZnO 나노분말의 저온합성)

  • 권용재;김경훈;임창성;심광보
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.5
    • /
    • pp.229-233
    • /
    • 2002
  • Nano-sized ZnO particles were successfully synthesized at low temperatures by a polymerized complex method via an organochemical route. The polymeric precursors could be prepared using Zn nitrate hexahydrate and a mixed solution of citric acid and ethylene glycol as a chelating agent and a reaction medium. The polymeric precursors were calcined at temperatures from 300 to $700^{\circ}C$ for 3 h, and evaluated for degree of crystallization process, thermal decomposition, surface morphology and crystallite size. The thermal decomposition and crystallization process were analyzed by TG-DTA, FI-IR and XRD. The morphology and crystallite size of the calcined particles were evaluated by scanning electron microscopy (SEM), transmittance electron microscopy (TEM) and Scherrer's equation. Crystallization of the ZnO particles was detected at $300^{\circ}C$ and entirely completed above $400^{\circ}C$. Particles calcined between 400 and $700^{\circ}C$ showed a uniform size distribution with a round shape. The average particle sizes calcined at $400^{\circ}C$ for 3 hour were 30~40nm showing an ordinary tendency to increase with the temperatures.

Synthesis of Nanosized Titanium-Colloid by Sol-Gel Method and Characterization of Zinc Phosphating (졸-겔법에 의한 나노크기의 티탄-콜로이드 합성 및 인산염 피막 특성)

  • Lee Man Sig;Lee Sun-Do
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.1
    • /
    • pp.37-43
    • /
    • 2005
  • Nanosized titanium-colloid particles were prepared by sol-gel method. The physical properties, such as thermal stability, crystallite size and crystallinity according to synthesis condition have been investigated by TEM, XRD, SEM, TGA and DTA. In addition, Zinc phosphating has been studied in order to compare the phosphating characterization of prepared nanosized titanium-colloid particles. The major phase of all the prepared titanium-colloid particles was an amorphous structure regardless of synthesis temperature and the structure was composed of phoshate complex and titanium. The micrographs of HR- TEM showed that nanosized titanium-colloid particles possessed a spherical morphology with a narrow size distribution. The crystallite size of the titanium-colloid particles synthesized at 80℃ was 4-5 nm and increased to 8-10 nm with an increase of synthesis temperature (150℃). In addition, the coating weight increased with an increase of temperature of phosphating solution and when the concentration of titanium-colloid was 2.0 g/l, the coating weight was 1.0 g/㎡.

Luminescent Properties of Y2O3:Eu Red Phosphor Particles Prepared by Microwave Synthesis (마이크로웨이브 합성법으로 제조한 Y2O3:Eu 적색 형광체의 발광 특성)

  • Maniquiz, Meriel Chua;Kang, Tae-Won;Ahn, Jin-Han;Jung, Kyeong-Youl
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.203-208
    • /
    • 2009
  • $Y_2O_3$:Eu red phosphor was prepared by microwave synthesis. The crystal phase, particle morphology, and luminescent properties were characterized by XRD, SEM, and spectrofluorometer, respectively. The prepared $Y_2O_3$:Eu particles had good crystallinity and strong red emission under ultravioletet excitation. The crystallite size increased with calcination temperature and satuarated at $1200^{\circ}C$. The primary particle size initially formed was varied from 30 to 450 nm with microwave-irradiation (MI) time. It was found that the emission intensity of $Y_2O_3$:Eu phosphor strongly depends on the MI time. In terms of the emission intensity, it was recommended that the MI time should be less than 15 min. The emission intensity of $Y_2O_3$:Eu phosphor prepared by microwave syntehsis strongly depended on the crystallite size of which an optimal size range was 50-60 nm.

Synthesis of Nanosized Cu/Zn Particles in the Base Oil Phase by Hydrothermal Method and Their Abrasion Resistance (기유 내에서 수열합성법에 의한 나노크기의 구리/아연 입자 합성 및 윤활 특성)

  • Kim, Young-Seok;Lee, Ju-Dong;Lee, Man-Sig
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.1
    • /
    • pp.11-15
    • /
    • 2007
  • Stable metallic Cu/Zn nanoparticles were prepared in the base oil phase by hydrothermal method. The physical properties, such as crystal structure, crystallite size and crystallinity according to synthesis conditions have been investigated by XRD, FT-IR and TEM. In addition, 4-ball test has been performed in order to investigate the frictional wear properties of prepared nanosized Cu/Zn particles. The peaks of the X-ray diffraction pattern indicate that the particle size was very small and crystallinity of Cu/Zn particles was good. The micrographs of TEM showed that nanosized Cu/Zn particles possessed a spherical morphology with a narrow size distribution. The crystallite size of the Cu/Zn particles synthesized in base oils was 23-30 nm. It was found that the antiwear capacity increases with increasing Cu/Zn concentration. When the concentration of Cu/Zn was 5.0 wt%, the wear scar diameters was 0.38 mm.

The Effect of Preparation Conditions on the Characteristics of Co3O4 Particles Prepared by Spray Pyrolysis (합성 조건이 분무열분해 공정에 의해 합성되는 Co3O4 분말의 특성에 미치는 영향)

  • Kim, Do-Youp;Ju, Seo-Hee;Koo, Hye-Young;Hong, Seung-Kwon;Kang, Yun-Chan
    • Korean Journal of Materials Research
    • /
    • v.16 no.1
    • /
    • pp.11-18
    • /
    • 2006
  • [ $Co_3O_4$ ] particles with non-aggregation characteristics were prepared by various conditions such as preparation temperature, flow rate of carrier gas, and concentration of spray solution using spray pyrolysis. The morphology and crystallinity of the preformed particles obtained by spray pyrolysis at various conditions affected the mean size and morphology of the post-treated $Co_3O_4$ particles. The preformed particles with hollow and porous morphology obtained from spray solution with citric acid and ethylene glycol turned to $Co_3O_4$ particles with nano size, regular morphology and non-aggregation characteristics after post-treatment at $800^{\circ}C$. On the other hand, the preformed particles obtained by the preparation conditions of short residence time of particles inside hot wall reactor and high reactor temperature turned to $Co_3O_4$ particles with aggregated morphology after post-treatment. The mean crystallite size and particle size of the $Co_3O_4$ particles prepared from optimum preparation conditions were 47 nm and 210 nm at post-treatment temperature of $800^{\circ}C$.

Synthesis of ZnWO4 Nanopowders by Polymerized complex Method (Polymerized complex법에 의한 ZnWO4 nanopower의 제조)

  • Ryu, Jeong-Ho;Lim, Chang-Sung;Auh, Keun-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.321-326
    • /
    • 2002
  • ZnWO$_4$ nano-powders were successfully prepared by polymerized complex method using zinc nitrate and tungstic acid as starting materials. In order to investigate the thermal decomposition and crystallization process, the polymeric precursors were heat-treated at temperatures from 300 to 600$^{\circ}$C for 3 h, and the heat-treated powders were characterized by XRD and FTIR. The surface morphology of the heat-treated powders were observed using SEM and TEM. The crystallite size was measured by X-ray analysis. Crystallization of the ZnWO$_4$ powders were detected at 400$^{\circ}$C and entirely completed at a temperature of 600$^{\circ}$C. The particles heat-treated 400 and 500$^{\circ}$C showed primarily co-mixed morphology with spherical and silkworm-like forms, while the particles heat-treated at 600$^{\circ}$C showed more homogeneous morphology. The average crystalline size were 19.9∼24.nm showing an ordinary tendency to increase with the temperatures from 400 to 600$^{\circ}$C.

Low temperature synthesis of $ZnWO_4$ nanopowders using polymeric complex precursor (착체중합법에 의한 $ZnWO_4$ 나노분말의 저온합성)

  • 류정호;임창성;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.3
    • /
    • pp.133-137
    • /
    • 2002
  • $ZnWO_4$ nano-powders were successfully synthesized at low temperature by polymerized complex method using zinc acetate and tungstic acid as starting materials. The polymeric precursors were heat-treated at temperatures from 300 to $600^{\circ}C$ for 3 h. The precursors and heat-treated powders were evaluated for crystallization process, thermal decomposition, surface morphology and crystallite size. Crystallization of the $ZnWO_4$ powders were detected at $400^{\circ}C$ and entirely completed at a temperature of $600^{\circ}C$. The particles heat-treated at $400^{\circ}C$ showed primarily co-mixed morphology with spherical and silk-worm-like forms, while the particles heat-treated at $500^{\circ}C$ showed more homogeneous morphology. The average crystalline sizes were 17.62~24.71 nm showing an ordinary tendency to increase with the temperatures from 400 to $600^{\circ}C$.

Synthesis of Aligned ZnO Nanorod Arrays via Hydrothermal Route (수열합성법에 의한 정렬된 ZnO 나노로드 구조의 합성)

  • Koo, Jin Heui;Lee, Byeong Woo
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.472-476
    • /
    • 2016
  • The nano-array of the vertically aligned rod-like particles grown on ZnO coated glass-substrates was obtained via hydrothermal process. ZnO thin film coatings were prepared on the glass substrates using a MOD (metallorganic deposition) dip-coating method with zinc chloride dihydrate as starting material and 2-ethylhexanol as solvent. ZnO nanorods were synthesized on the seeded substrates by hydrothermal method at $80^{\circ}C$ using zinc-nitrate hexahydrate as a Zn source and sodium hydroxide as a mineralizer. Under the hydrothermal condition, the rod-like nanocrystals were easily attaching on the already ZnO seeded (coated) glass surface. It has been shown that the hydrothermal synthesis parameters are key factors in the nucleation and growth of ZnO crystallites. By controlling of hydrothermal parameters, the ZnO particulate morphology could be easily tailored. Rod-shaped ZnO arrays on the glass substrates consisted of elongated crystals having 6-fold symmetry were predominantly developed at high Zn precursor concentration in the pH range 7~11.

Microstructure of brass electrodeposits in cyanide solution (시안화 황동도금욕을 사용한 黃銅電着層의 현미경조직)

  • Ye, Gil-Chon;Kim, Jong-Kwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.17 no.4
    • /
    • pp.106-119
    • /
    • 1984
  • Brass was electrodeposited over the range of the current densities from 2 to 8 A/$dm^2$ in cyanide bath at 20 and 40$^{\circ}C$. The cathode overpotential increased and the cathode efficiency was decreased respectively with decreasing temperature, increasing current density and addition of organic substance. The perferred orientation of the deposits were associated with the cathode overpotential and the nucleation energy of lattice planes. The (111) preferred orientation developed at the low current density and low cathode overpotential (440-520mV). On the other hand, the (111)+(100) preferred orientation developed at higher cathode overpotential (528-680mV). The (111)+(100) preferred orientation developed over the whole range of overpotential in the cyanide solution with organic additive. The copper content of deposit decreased with increasing current density and decreasing temperature. The morphology of the deposits with no additive was the polygonal body type of structure and the structure of the cross section was columnar structure. The morphology of the deposits with additive, on the other hand, was fine crystallite type of structure. And the structure of the cross section of them was the finer granular structure.

  • PDF

Microstructure of Zinc electrodeposit in Cyanide Solution (시안화아연욕을 사랑한 아연 전착층의 조직특성)

  • Ye G.C;Cho E.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.17 no.2
    • /
    • pp.41-58
    • /
    • 1984
  • Zinc was electrodeposited from cyanide solutions at temperature from 20$^{\circ}C\;to\;40^{\circ}C$ in the range of current density from 0.5 to 8A/$dm^2$. The preferred orientation changed from (10.3)+(11.0) to (11.0) texture with increasing cathode overpotential in the additive free solution, while the (11.0) preferred orientation developed at lower overpotentials (800-1270 mV) and the (11.0)+(10.0) preferred orientation was formed at higher overpotential (1300-1400mV) in the solution with brightner. Mossy type of morphology developed mostly in the additive free deposits and the microstructure of the cross section of the above deposits changed from columar structure to granular structure with increasing overpotential. The surface appearance of the deposits with additive having (11.0) texture was the smooth deposit of very small crystallite, while that of the deposits having (11.0)+(10.0) texture was fine crystalline deposit. The microstructure of the cross section of them was the fine field oriented type of structure.

  • PDF