• Title/Summary/Keyword: Crystallisation kinetics

Search Result 3, Processing Time 0.02 seconds

Crystallization Behaviour of PP and Carbon Nanofibre Blends

  • Chatterjee, A.;Deopura, B.L.
    • Fibers and Polymers
    • /
    • v.4 no.3
    • /
    • pp.102-106
    • /
    • 2003
  • Crystallization behaviour of blends of different MFI isotactic polypropylenes (PP), and blends of PP with carbon nanofibre have been investigated by DSC and polarizing optical microscope. Both higher MFI PP component and the carbon nanofibre in the blend influence the nucleation activity of the melt during non-isothermal crystallization. In presence of carbon nanofibre, the sherulitic growth rate is highly disturbed. The calculation of nucleation activity indicates that carbon nanofibres act as active substrate for heterogeneous nucleation.

The Crystallization Kinetics of CaO-MgO-Al2O3-SiO2 Glass System Using Thermal Analysis (열분석을 이용한 CaO-MgO-Al$_2$O$_3$-SiO$_2$의 결정화 기구의 연구)

  • 김형순
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.1
    • /
    • pp.9-14
    • /
    • 1992
  • Some of non-isothermal analysis methods are applied to CaO-MgO-Al2O3-SiO2 glass system to find the kinetics parameters of crystallisation, activation energy, Avrami component and frequency factor. The results using the non-isothermal analysis were compared to that of microstructure experiment. Analysis of the result has enabled to some methods to be to recommend as being the most appropriate equation to use in a glass system. It was shown that in the thermal analysis using the non-isothermal method of Kissinger, Augis-Bennett, Bansal, and Marotta, the calculation of activation energy is not much different, while Avrami component and frequency factor are different from applied each methods.

  • PDF

An Investigation on the Crystal Growth Studies and Emission line shape in $Er^{3+}$-doped Sodium Tellurite Glasses

  • Joshi, Purushottam;Jha, Animesh
    • Ceramist
    • /
    • v.10 no.3
    • /
    • pp.67-74
    • /
    • 2007
  • Crystallisation kinetics of the erbium doped soda-tellurite glasses were studied using the differential thermal analysis (DTA) and differential scanning calorimetery (DSC) techniques. The DTA curves in the temperature range of 350 K to 650 K were obtained from isochronal heating rates, chosen in the range of 2 to 20 K/min. DSC isothermal curves were used to calculate the fraction of crystals formed on reheating. The apparent activation energies for devitrification were derived by measuring the shifts in the values of $T_g$ and $T_x$ with heating rates, using the Kissinger method. The derived values of apparent activation energies for isochronal and isothermal methods varied in the range of $190-204\;{\pm}\;5\;kJ\;mol^{-1}$. The X-ray powder diffraction analysis of heat treated and transparent samples showed the presence of nano-scale size sodium-tellurite crystals. These crystallites were found to have a strong influence on the full width of half maxima of the transition in $Er^{3+}:\;^4I_{13/2}{\rightarrow}^4I_{15/2}$, which extended from 70 nm in the vitreous materials to 132 nm in glass-ceramic materials.

  • PDF