Processing math: 100%
  • Title/Summary/Keyword: Crystalline Si solar cell

Search Result 188, Processing Time 0.03 seconds

MgF2/CeO2 AR Coating on p-type (100) Cz Silicon Solar Cells (p-type (100) Cz 단결정 실리콘 태양전지의 MgF2/CeO2 반사 방지막에 관한 연구)

  • 이수은;최석원;박성현;강성호;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.593-596
    • /
    • 1999
  • This paper presents a process optimization of antireflectiun (AR) coating on crystalline Si solar cells. Theoretical and experimental investigations were performed on a doble-layer AR(DLAR) coating of MgF2/CeO2, We investigated CeO2 films as an All layer because they hale a proper refractive index of 2.46 and demonstrate the same lattice constant as Si substrate. RF sputter grown CeO2 film showed strong dependence on a deposition temperature. The CeO2 film deposited at 400 C exhibited a strong (111) preferred orientation and the lowest surface roughness of 6.87 \AA. Refractive index of MgF2 film was measured as 1.386 for the most of growth temperature. An optimized DLAR coating showed a reflectance as low as 2.04 % in the wavelengths ranged from 0.4 7m to 1.1 7m. We achieved the efficiencies of solar cells greater than 15% with 3.12 % improvement with DLAR coatings . Further details on MgF2, CeO2 films, and cell fabrication Parameters are presented in this paper.

  • PDF

Selective Emitter Effect of porous silicon AR Coatings formed on single crystalline silicon solar cells (단결정 실리콘 태양전지에 형성한 다공성실리콘 반사방지막의 선택적 에미터 특성 연구)

  • Lee, Hyun-Woo;Kim, Do-Wan;Lee, Eun-Joo;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.116-117
    • /
    • 2006
  • We investigated selective emitter effect of Porous Silicon (PSI) as antireflection coatings (ARC). The thin PSi layer, less than 100nm, was electrochemically formed by electrochemical method in about 3μm thick n+ emitter on single crystalline silicon wafer (sc-Si). The appropriate PSi formations for selective emitter effect were carried out a two steps. A first set of samples allowed to be etched after metal-contact processing and a second one to evaporate Ag front-side metallization on PSi layer, by evaluating the I-V features The PSi has reflectance less than 20% in wavelength for 450-1000nm and porosity is about 60%. The cell made after front-contact has improved cell efficiency of about in comparison with the one made after PSi. The observed increase of efficiency for samples with PSi coating could be explained not only by the reduction of the reflection loss and surface recombination but also by the increased short-circuit current (Isc) within selective emitter. The assumption was confirmed by numerical modeling. The obtained results point out that it would be possible to prepare a solar cell over 15% efficiency by the proposed simple technology.

  • PDF

A effect of the back contact silicon solar cell with surface texturing size and density (표면 텍스쳐링 크기와 밀도가 후면 전극 실리콘 태양전지에 미치는 영향)

  • Jang, Wanggeun;Jang, Yunseok;Pak, Jungho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.112.1-112.1
    • /
    • 2011
  • The back contact solar cell (BCSC) has several advantages compared to the conventional solar cell since it can reduce grid shadowing loss and contact resistance between the electrode and the silicon substrate. This paper presents the effect of the surface texturing of the silicon BCSC by varying the texturing depth or the texturing gap in the commercially available simulation software, ATHENA and ATLAS of the company SILVACO. The texturing depth was varied from 5μm to 150μm and the texturing gap was varied from 1μm to 100μm in the simulation. The resulting efficiency of the silicon BCSC was evaluated depending on the texturing condition. The quantum efficiency and the I-V curve of the designed silicon BCSC was also obtained for the analysis since they are closely related with the solar cell efficiency. Other parameters of the simulated silicon BCSC are as follows. The substrate was an n-type silicon, which was doped with phosphorous at 6×1015cm3, and its thickness was 180μm, a typical thickness of commercial solar cell substrate thickness. The back surface field (BSF) was 1×1020cm3 and the doping concentration of a boron doped emitter was 8.5×1019cm3. The pitch of the silicon BCSC was 1250μm and the anti-reflection coating (ARC) SiN thickness was 0.079μm. It was assumed that the texturing was anisotropic etching of crystalline silicon, resulting in texturing angle of 54.7 degrees. The best efficiency was 25.6264% when texturing depth was 50μm with zero texturing gap in case of low texturing depth (< 100μm).

  • PDF

유기태양전지 연구 동향

  • Kim, Gyeong-Gon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.20-20
    • /
    • 2010
  • Organic based photovoltaics (OPV) have been received a lot of attention because they are lightweight, inexpensive to fabricate and flexible compare to crystalline Si solar cells. In this seminar, several important progresses in the Polymer PV, such as, formation of bulk heterojunction, development of post annealing technique, tandem cell fabrication will be introduced. In addition that, some efforts to achieve the further improvement in the performance of the Polymer PV will be discussed.

  • PDF

Boron doping with fiber laser and lamp furnace heat treatment for p-a-Si:H layer for n-type solar cells

  • Kim, S.C.;Yoon, K.C.;Yi, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.322-322
    • /
    • 2010
  • For boron doping on n-type silicon wafer, around 1,000C doping temperature is required, because of the relatively low solubility of boron in a crystalline silicon comparing to the phosphorus case. Boron doping by fiber laser annealing and lamp furnace heat treatment were carried out for the uniformly deposited p-a-Si:H layer. Since the uniformly deposited p-a-Si:H layer by cluster is highly needed to be doped with high temperature heat treatment. Amorphous silicon layer absorption range for fiber laser did not match well to be directly annealed. To improve the annealing effect, we introduce additional lamp furnace heat treatment. For p-a-Si:H layer with the ratio of SiH4:B2H6:H2=30:30:120, at 200C, 50 W power, 0.2 Torr for 30 min. 20mm×20mm size fiber laser cut wafers were activated by Q-switched fiber laser (1,064 nm) with different sets of power levels and periods, and for the lamp furnace annealing, 980C for 30 min heat treatment were implemented. To make the sheet resistance expectable and uniform as important processes for the p+ layer on a polished n-type silicon wafer of (100) plane, the Q-switched fiber laser used. In consequence of comparing the results of lifetime measurement and sheet resistance relation, the fiber laser treatment showed the trade-offs between the lifetime and the sheet resistance as 100ω/sq. and 11.8μs vs. 17ω/sq. and 8.2μs. Diode level device was made to confirm the electrical properties of these experimental results by measuring C-V(-F), I-V(-T) characteristics. Uniform and expectable boron heavy doped layers by fiber laser and lamp furnace are not only basic and essential conditions for the n-type crystalline silicon solar cell fabrication processes, but also the controllable doping concentration and depth can be established according to the deposition conditions of layers.

  • PDF

Study on Fiber Laser Annealing of p-a-Si:H Deposition Layer for the Fabrication of Interdigitated Back Contact Solar Cells (IBC형 태양전지 제작을 위한 p-a-Si:H 증착층의 파이버 레이저 가공에 관한 연구)

  • Kim, Sung-Chul;Lee, Young-Seok;Han, Kyu-Min;Moon, In-Yong;Kwon, Tae-Young;Kyung, Do-Hyun;Kim, Young-Kuk;Heo, Jong-Kyu;Yoon, Ki-Chan;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.430-430
    • /
    • 2008
  • Using multi plasma enhanced chemical vapor deposition system (Multi-PECVD), p-a-Si:H deposition layer as a p+ region which was annealed by laser (Q-switched fiber laser, λ = 1064 nm) on an n-type single crystalline Si (100) plane circle wafer was prepared as new doping method for single crystalline interdigitated back contact (IBC) solar cells. As lots of earlier studies implemented, most cases dealt with the excimer (excited dimer) laserannealing or crystallization of boron with the ultraviolet wavelength range and 109 sec pulse duration. In this study, the Q-switched fiber laser which has higher power, longer wavelength of infrared range (λ = 1064 nm) and longer pulse duration of 108 sec than excimer laser was introduced for uniformly deposited p-a-Si:H layer to be annealed and to make sheet resistance expectable as an important process for IBC solar cell p+ layer on a polished n-type Si circle wafer. A 525μm thick n-type Si semiconductor circle wafer of (100) plane which was dipped in a buffered hydrofluoric acid solution for 30 seconds was mounted on the Multi-PECVD system for p-a-Si:H deposition layer with the ratio of SiH4:H2:B2H6 = 30:120:30, at 200C, 50 W power, 0.2 Torr pressure for 20 minutes. 15 mm × 15 mm size laser cut samples were annealed by fiber laser with different sets of power levels and frequencies. By comparing the results of lifetime measurement and sheet resistance relation, the laser condition set of 50 mm/s of mark speed, 160 kHz of period, 21 % of power level with continuous wave mode of scanner lens showed the features of small difference of lifetime and lowering sheet resistance than before the fiber laser treatment with not much surface damages. Diode level device was made to confirm these experimental results by measuring C-V, I-V characteristics. Uniform and expectable boron doped layer can play an important role to predict the efficiency during the fabricating process of IBC solar cells.

  • PDF

The optical properties of columnar structure according to the growth angles of ZnO thin fims (성장각도에 따른 주상구조 ZnO 박막의 광학적 특성)

  • Ko, Ki-Han;Seo, Jae-Keun;Kim, Jae-Kwang;Kang, Eun-Kyu;Park, Mun-Gi;Ju, Jin-Young;Shin, Yong-Deok;Choi, Won-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.127-127
    • /
    • 2009
  • The most important part of the fabrication solar cells is the anti-reflection coating when excludes the kinds of silicon substrates (crystalline, polycrystalline, or amorphous), patterns and materials of electrodes. Anti-reflection coatings reduce the reflection of sunlight and at last increase the intensity of radiation to inside of solar cells. So, we can obtain increase of solar cell efficiency about 10% using anti-reflection coating. There are many kinds of anti-reflection film for solar cell, such as SiN, SiO2, a-Si, and so on. And, they have two functions, anti-reflection and passivation. However such materials could not perfectly prevent reflection. So, in this work, we investigated the anti-reflection coating with the columnar structure ZnO thin film. We synthesized columnar structure ZnO film on glass substrates. The ZnO films were synthesized using a RF magnetron sputtering system with a pure (99.95%) ZnO target at room temperature. The anti-reflection coating layer was sputtered by argon and oxygen gases. The angle of target and substrate measures 0, 20, 40, 60 degrees, the working pressure 10 mtorr and the 250 W of RF power during 40 minutes. The confirm the growth mechanism of ZnO on columnar structure, the anti-reflection coating layer was observed by field emission scanning electron microscopy (FE-SEM). The optical trends were observed by UV-vis and Elleso meter.

  • PDF

Investigation of Firing Conditions for Optimizing Aluminum-Doped p+-layer of Crystalline Silicon Solar Cells

  • Lee, Sang Hee;Lee, Doo Won;Shin, Eun Gu;Lee, Soo Hong
    • Current Photovoltaic Research
    • /
    • v.4 no.1
    • /
    • pp.12-15
    • /
    • 2016
  • Screen printing technique followed by firing has commonly been used as metallization for both laboratory and industrial based solar cells. In the solar cell industry, the firing process is usually conducted in a belt furnace and needs to be optimized for fabricating high efficiency solar cells. The printed-Al layer on the silicon is rapidly heated at over 800C which forms a layer of back surface field (BSF) between Si-Al interfaces. The BSF layer forms pp+ structure on the rear side of cells and lower rear surface recombination velocity (SRV). To have low SRV, deep p+ layer and uniform junction formation are required. In this experiment, firing process was carried out by using conventional tube furnace with N2 gas atmosphere to optimize Voc of laboratory cells. To measure the thickness of BSF layer, selective etching was conducted by using a solution composed of hydrogen fluoride, nitric acid and acetic acid. The Voc and pseudo efficiency were measured by Suns-Voc to compare cell properties with varied firing condition.

Electrical Loss Reduction in Crystalline Silicon Photovoltaic Module Assembly: A Review

  • Chowdhury, Sanchari;Kumar, Mallem;Ju, Minkyu;Kim, Youngkuk;Han, Chang-Soon;Park, Jinshu;Kim, Jaimin;Cho, Young Hyun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.7 no.4
    • /
    • pp.111-120
    • /
    • 2019
  • The output power of a crystalline silicon (c-Si) photovoltaic (PV) module is not directly the sum of the powers of its unit cells. There are several losses and gain mechanisms that reduce the total output power when solar cells are encapsulated into solar modules. Theses factors are getting high attention as the high cell efficiency achievement become more complex and expensive. More research works are involved to minimize the "cell-to-module" (CTM) loss. Our paper is aimed to focus on electrical losses due to interconnection and mismatch loss at PV modules. Research study shows that among all reasons of PV module failure 40.7% fails at interconnection. The mismatch loss in modern PV modules is very low (nearly 0.1%) but still lacks in the approach that determines all the contributing factors in mismatch loss. This review paper is related to study of interconnection loss technologies and key factors contributing to mismatch loss during module fabrication. Also, the improved interconnection technologies, understanding the approaches to mitigate the mismatch loss factors are precisely described here. This research study will give the approach of mitigating the loss and enable improvement in reliability of PV modules.

Silicon Nitride Layer Deposited at Low Temperature for Multicrystalline Solar Cell Application

  • Karunagaran, B.;Yoo, J.S.;Kim, D.Y.;Kim, Kyung-Hae;Dhungel, S.K.;Mangalaraj, D.;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.276-279
    • /
    • 2004
  • Plasma enhanced chemical vapor deposition (PECVD) of silicon nitride (SiN) is a proven technique for obtaining layers that meet the needs of surface passivation and anti-reflection coating. In addition, the deposition process appears to provoke bulk passivation as well due to diffusion of atomic hydrogen. This bulk passivation is an important advantage of PECVD deposition when compared to the conventional CVD techniques. A further advantage of PECVD is that the process takes place at a relatively low temperature of 300t, keeping the total thermal budget of the cell processing to a minimum. In this work SiN deposition was performed using a horizontal PECVD reactor system consisting of a long horizontal quartz tube that was radiantly heated. Special and long rectangular graphite plates served as both the electrodes to establish the plasma and holders of the wafers. The electrode configuration was designed to provide a uniform plasma environment for each wafer and to ensure the film uniformity. These horizontally oriented graphite electrodes were stacked parallel to one another, side by side, with alternating plates serving as power and ground electrodes for the RF power supply. The plasma was formed in the space between each pair of plates. Also this paper deals with the fabrication of multicrystalline silicon solar cells with PECVD SiN layers combined with high-throughput screen printing and RTP firing. Using this sequence we were able to obtain solar cells with an efficiency of 14% for polished multi crystalline Si wafers of size 125 m square.

  • PDF