• 제목/요약/키워드: Crystalline Si Solar Cell

검색결과 188건 처리시간 0.028초

Screen printed c - Si solar cell의 전면 전극 Finger width 및 spacing 최적화에 대한 연구

  • 김상섭;최재우;이준신
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.391-391
    • /
    • 2011
  • Crystalline silicon solar cell을 양산에 적용하기 위해 전면 전극의 패턴을 형성하는 방법으로 Ag paste를 이용한 screen printing이 가장 일반적으로 사용된다. 전면 전극의 패턴 형성 시, Finger의 width와 spacing은 Fill factor, JSC, VOC 등 태양전지의 중요 parameter들과 관련되어, 효율에 영향을 미치기 때문에, printing 시 Finger width와 spacing을 최적화하여 최대한의 효율을 내는 조건을 찾는 것이 바람직하다. 본 연구에서는 Finger width를 $30{\mu}m{\sim}100{\mu}m$, spacing을 $1.8{\mu}m{\sim}2.8{\mu}m$ 까지 가변하여 c-Si solar cell을 제작하였으며, 제작된 cell의 LIV를 측정을 통하여, 최적의 효율을 내는 조건을 찾고자 하였다. 그 결과 Finger width $30{\mu}m$, Finger spacing $1.8{\mu}m$의 조건에서 17.12%로 최고의 효율을 나타내었다.

  • PDF

습식텍스쳐를 이용한 다결정 실리콘 광학적.전기적 특성 연구 (A Study on the Optical and Electrical Characteristics of Multi-Silicon Using Wet Texture)

  • 한규민;유진수;유권종;이희덕;최성진;권준영;김기호;이준신
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.383-387
    • /
    • 2009
  • Multi-crystalline silicon surface etching without grain-boundary delineation is a challenging task for the fabrication of high efficiency solar cell. The use of sodium hydroxide - sodium hypochlorite (NaOH40% + NaOCl 12%) solution for texturing multi-crystalline silicon wafer surface in solar cell fabrication line is reported in this article. in light current-voltage results, the cells etched in NaOH 40% + NaOCl 12% = 1:2 exhibited higher short circuit current and open circuit voltage than those of the cells etched in NaOH 40% + NaOCl 12% = 1:1 solution. we have obtained 15.19% conversion efficiency in large area(156cm2) multi-Si solar cells etched in NaOH 40% + NaOCl 12% = 1:1 solution.

  • PDF

Investigations on Microcrystalline Silicon Films for Solar Cell Application

  • Hwang, Hae-Sook;Park, Min-Gyu;Ruh, Hyun;Yu, Hyun-Ung
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2909-2912
    • /
    • 2010
  • Hydrogenated microcrystalline silicon (${\mu}c$-Si:H) thin film for solar cells is prepared by plasma-enhanced chemical vapor deposition and physical properties of the ${\mu}c$-Si:H p-layer has been investigated. With respect to stable efficiency, this film is expected to surpass the performance of conventional amorphous silicon based solar cells and very soon be a close competitor to other thin film photovoltaic materials. Silicon in various structural forms has a direct effect on the efficiency of solar cell devices with different electron mobility and photon conversion. A Raman microscope is adopted to study the degree of crystallinity of Si film by analyzing the integrated intensity peaks at 480, 510 and $520\;cm^{-1}$, which corresponds to the amorphous phase (a-Si:H), microcrystalline (${\mu}c$-Si:H) and large crystals (c-Si), respectively. The crystal volume fraction is calculated from the ratio of the crystalline and the amorphous phase. The results are compared with high-resolution transmission electron microscopy (HR-TEM) for the determination of crystallinity factor. Optical properties such as refractive index, extinction coefficient, and band gap are studied with reflectance spectra.

태양전지 응용을 위한 PECVD 실리콘 질화막 증착 및 열처리 최적화 (PECVD Silicon Nitride Film Deposition and Annealing Optimization for Solar Cell Application)

  • Yoo, Jin-Su;Dhungel Suresh Kumar;Yi, Jun-Sin
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권12호
    • /
    • pp.565-569
    • /
    • 2006
  • Plasma enhanced chemical vapor deposition(PECVD) is a well established technique for the deposition of hydrogenated film of silicon nitride (SiNx:H), which is commonly used as an antireflection coating as well as passivating layer in crystalline silicon solar cell. PECVD-SiNx:H films were investigated by varying the deposition and annealing conditions to optimize for the application in silicon solar cells. By varying the gas ratio (ammonia to silane), the silicon nitride films of refractive indices 1.85 - 2.45 were obtained. The film deposited at $450^{\circ}C$ showed the best carrier lifetime through the film deposition rate was not encouraging. The film deposited with the gas ratio of 0.57 showed the best carrier lifetime after annealing at a temperature of $800^{\circ}C$. The single crystalline silicon solar cells fabricated in conventional industrial production line applying the optimized film deposition and annealing conditions on large area substrate of size $125mm{\times}125mm$ (pseudo square) was found to have the conversion efficiencies as high as 17.05 %. Low cost and high efficiency silicon solar cells fabrication sequence has also been explained in this paper.

Photovoltaic characteristics of Si quantum dots solar cells

  • Ko, Won-Bae;Lee, Jun-Seok;Lee, Sang-Hyo;Cha, Seung-Nam;Hong, Jin-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.489-489
    • /
    • 2011
  • The effect of Si quantum dots for solar cell appications was investigated. The 5 ~ 10 nm Si nanoparticle was fabricated on p-type single and poly crystalline wafer by magnetron sputtering and laser irradiation process. Scanning electron microscopy (SEM), atomic force measurement (AFM) and transmission electron microscopy (TEM) images showed that the Si QDs array were clearly embedded in insulating layer ($SiO_2$). Photoluminesence (PL) measurements reliably exhibited bandgap transitions with every size of Si QDs. The photo-current measurements were showed different result with size of QD and number of superlattice.

  • PDF

결정질 실리콘 태양전지를 위한 PA-ALD Al2O3 막의 패시베이션 효과 향상 연구 (Improvement on the Passivation Effect of PA-ALD Al2O3 Layer Deposited by PA-ALD in Crystalline Silicon Solar Cells)

  • 송세영;강민구;송희은;장효식
    • 한국전기전자재료학회논문지
    • /
    • 제26권10호
    • /
    • pp.754-759
    • /
    • 2013
  • Aluminum oxide($Al_2O_3$) film deposited by atomic layer deposition (ALD) is known to supply excellent surface passivation properties on crystalline Si surfaces. Since $Al_2O_3$ has fixed negative charge, it forms effective surface passivation by field effect passivation on the rear side in p-type silicon solar cell. However, $Al_2O_3$ layer formed by ALD process needs very long process time, which is not applicable in mass production of silicon solar cells. In this paper, plasma-assisted ALD(PA-ALD) was applied to form $Al_2O_3$ to reduce the process time. $Al_2O_3$ synthesized by ALD on c-Si (100) wafers contains a very thin interfacial $SiO_2$ layer, which was confirmed by FTIR and TEM. To improve passivation quality of $Al_2O_3$ layer, the deposition temperature was changed in range of $150{\sim}350^{\circ}C$, then the annealing temperature and time were varied. As a result, the silicon wafer with aluminum oxide film formed in $250^{\circ}C$, $400^{\circ}C$ and 10 min for the deposition temperature, the annealing temperature and time, respectively, showed the best lifetime of 1.6ms. We also observed blistering with nanometer size during firing of $Al_2O_3$ deposited on p-type silicon.

광 입사각이 BIPV에 적용되는 단결정 또는 비정질 실리콘 태양전지의 양자효율에 미치는 영향 (Incident Angle Dependence of Quantum Efficiency in c-Si Solar Cell or a-Si Thin Film Solar Cell in BIPV System)

  • 강정욱;손찬희;조광섭;유진혁;김정식;박창균;차성덕;권기청
    • 한국진공학회지
    • /
    • 제21권1호
    • /
    • pp.62-68
    • /
    • 2012
  • 건재 일체형 태양광발전(BIPV) 응용을 위해 광 입사각에 따른 태양전지의 변환 효율은 중요하다. 양자효율은 태양전지의 파장별 전자 수집효율을 말하며, 입사각별 양자효율 측정으로 입사각에 따른 태양전지 출력 변화 요인을 분석할 수 있다. 이러한 입사각별 양자효율은 태양전지 종류에 따라 차이를 보인다. 본 연구에서는 가장 많이 쓰이는 벌크형 단결정 실리콘 태양전지와 박막형 비정질 실리콘 태양전지의 입사각별 양자효율을 비교하였다. 그 결과, 단결정 실리콘 태양전지에서는 광 입사각이 증가함에 따라 전 파장영역에서 양자효율이 감소했다. 반면, 비정질 박막 실리콘 태양전지에서는 단파장 영역에서는 결정질 실리콘과 동일하게 감소하였으나, 그 이후의 흡수 영역에서 약 $40^{\circ}$의 입사각까지 증가 또는 일정한 양자효율을 보이다가 이후에 급격히 감소하는 결과를 얻었다. 이는 비정질 박막 실리콘 태양전지에서 입사각이 증가함에 따라 특정 파장 영역에서 산란과 박막 구조의 영향으로 예상된다. 따라서, 태양전지의 구조 및 광학 구조 최적화 등으로 BIPV 적용에 유리한 구조 태양전지 제작이 가능할 것으로 보인다.

단결정 실리콘 태양전지를 위한 실리콘 질화막의 밴드갭과 결함사이트 (Band Gap and Defect Sites of Silicon Nitride for Crystalline Silicon Solar Cells)

  • 정성욱;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.365-365
    • /
    • 2010
  • In this paper, silicon nitride thin films with different silane and ammonia gas ratios were deposited and characterized for the antireflection and passivation layer of high efficiency single crystalline silicon solar cells. As the flow rate of the ammonia gas increased, the refractive index decreased and the band gap increased. Consequently, the transmittance increased due to the higher band gap and the decrease of the defect states which existed for the 1.68 and 1.80 eV in the SiNx films. The reduction in the carrier lifetime of the SiNx films deposited by using a higher $NH_3/SiH_4$ flow ratio was caused by the increase of the interface traps and the defect states in/on the interface between the SiNx and the silicon wafer. The silicon and nitrogen rich films are not suitable for generating both higher carrier lifetimes and transmittance. These results indicate that the band gap and the defect states of the SiNx films should be carefully controlled in order to obtain the maximum efficiency for c-Si solar cells.

  • PDF

Heat Shocking에 의한 결정질 실리콘 Solar Cell의 출력특성 (The Characteristic of Crystalline Si Solar Cell by Heat Shocking)

  • 신준오;정태희;김태범;강기환;안형근;한득영
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.246-250
    • /
    • 2009
  • String & tabbing step in the crystalline PV module manufacturing process for the temperature directly affects solar cells. In fact, in the manufacture of PV modules tend to be temperature factor and the corresponding changes n the output shows the same characteristics. In this journal, it will be considered about thermal characteristics, especially changes of characteristic in high temperature of the solar cell through experiment that we measure electric output characteristics of solar cells after those are applied with high temperature changes for two seconds. And we can think about the possibility of efficiency improvements over looks in PV module manufacturing processes.

  • PDF

결정질 실리콘 태양전지의 효율 향상을 위한 다층 전면 전극 형성 (Multi-layer Front Electrode Formation to Improve the Conversion Efficiency in Crystalline Silicon Solar Cell)

  • 홍지화;강민구;김남수;송희은
    • 한국전기전자재료학회논문지
    • /
    • 제25권12호
    • /
    • pp.1015-1020
    • /
    • 2012
  • Resistance of the front electrode is the highest proportion of the ingredients of the series resistance in crystalline silicon solar cell. While resistance of the front electrode is decreased with larger area, it induces the optical loss, causing the conversion efficiency drop. Therefore the front electrode with high aspect ratio increasing its height and decreasing is necessary for high-efficiency solar cell in considering shadowing loss and resistance of front electrode. In this paper, we used the screen printing method to form high aspect ratio electrode by multiple printing. Screen printing is the straightforward technology to establish the electrodes in silicon solar cell fabrication. The several printed front electrodes with Ag paste on silicon wafer showed the significantly increased height and slightly widen finger. As a result, the resistance of the front electrode was decreased with multiple printing even if it slightly increased the shadowing loss. We showed the improved electrical characteristics for c-Si solar cell with repeatedly printed front electrode by 0.5%. It lays a foundation for high efficiency solar cell with high aspect ratio electrode using screen printing.